Wearable brain-machine interface turns intentions into actions by Staff Writers Atlanta GA (SPX) Jul 27, 2021
A new wearable brain-machine interface (BMI) system could improve the quality of life for people with motor dysfunction or paralysis, even those struggling with locked-in syndrome - when a person is fully conscious but unable to move or communicate. A multi-institutional, international team of researchers led by the lab of Woon-Hong Yeo at the Georgia Institute of Technology combined wireless soft scalp electronics and virtual reality in a BMI system that allows the user to imagine an action and wirelessly control a wheelchair or robotic arm. The team, which included researchers from the University of Kent (United Kingdom) and Yonsei University (Republic of Korea), describes the new motor imagery-based BMI system this month in the journal Advanced Science. "The major advantage of this system to the user, compared to what currently exists, is that it is soft and comfortable to wear, and doesn't have any wires," said Yeo, associate professor on the George W. Woodruff School of Mechanical Engineering. BMI systems are a rehabilitation technology that analyzes a person's brain signals and translates that neural activity into commands, turning intentions into actions. The most common non-invasive method for acquiring those signals is ElectroEncephaloGraphy, EEG, which typically requires a cumbersome electrode skull cap and a tangled web of wires. These devices generally rely heavily on gels and pastes to help maintain skin contact, require extensive set-up times, are generally inconvenient and uncomfortable to use. The devices also often suffer from poor signal acquisition due to material degradation or motion artifacts - the ancillary "noise" which may be caused by something like teeth grinding or eye blinking. This noise shows up in brain-data and must be filtered out. The portable EEG system Yeo designed, integrating imperceptible microneedle electrodes with soft wireless circuits, offers improved signal acquisition. Accurately measuring those brain signals is critical to determining what actions a user wants to perform, so the team integrated a powerful machine learning algorithm and virtual reality component to address that challenge. The new system was tested with four human subjects, but hasn't been studied with disabled individuals yet. "This is just a first demonstration, but we're thrilled with what we have seen," noted Yeo, Director of Georgia Tech's Center for Human-Centric Interfaces and Engineering under the Institute for Electronics and Nanotechnology, and a member of the Petit Institute for Bioengineering and Bioscience.
New Paradigm "This new brain-machine interface uses an entirely different paradigm, involving imagined motor actions, such as grasping with either hand, which frees the subject from having to look at too much stimuli," said Mahmood, a Ph. D. student in Yeo's lab. In the 2021 study, users demonstrated accurate control of virtual reality exercises using their thoughts - their motor imagery. The visual cues enhance the process for both the user and the researchers gathering information. "The virtual prompts have proven to be very helpful," Yeo said. "They speed up and improve user engagement and accuracy. And we were able to record continuous, high-quality motor imagery activity." According to Mahmood, future work on the system will focus on optimizing electrode placement and more advanced integration of stimulus-based EEG, using what they've learned from the last two studies.
Research Report: "Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery-based Brain-Machine Interfaces"
MDA awarded next contract for flagship Canadarm3 Program Toronto, Canada (SPX) Jul 27, 2021 MDA Ltd. has been awarded a $35.3 million contract from the Canadian Space Agency (CSA) for the design of the Gateway External Robotics Interfaces (GERI), a key component of Canadarm3 which will be installed on the international Lunar Gateway. MDA has completed Phase A, the system definition phase of this GERI project. This new contract award covers the preliminary and detailed design of the robotic interfaces (Phases B and C), valued at $35.3 million. Today's contract announcement is the th ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |