Robot Technology News  
ROBO SPACE
These flexible feet help robots walk faster
by Staff Writers
San Diego CA (SPX) Jun 02, 2020

The soft robotic foot conforms to the surfaces on which it steps, allowing the robot to walk faster.

Roboticists at the University of California San Diego have developed flexible feet that can help robots walk up to 40 percent faster on uneven terrain such as pebbles and wood chips. The work has applications for search-and-rescue missions as well as space exploration.

"Robots need to be able to walk fast and efficiently on natural, uneven terrain so they can go everywhere humans can go, but maybe shouldn't," said Emily Lathrop, the paper's first author and a Ph.D. student at the Jacobs School of Engineering at UC San Diego.

The researchers will present their findings at the RoboSoft conference which takes place virtually May 15 to July 15, 2020.

"Usually, robots are only able to control motion at specific joints," said Michael T. Tolley, a professor in the Department of Mechanical and Aerospace Engineering at UC San Diego and senior author of the paper. "In this work, we showed that a robot that can control the stiffness, and hence the shape, of its feet outperforms traditional designs and is able to adapt to a wide variety of terrains."

The feet are flexible spheres made from a latex membrane filled with coffee grounds. Structures inspired by nature? such as plant roots? and by man-made solutions? such as piles driven into the ground to stabilize slopes? are embedded in the coffee grounds.

The feet allow robots to walk faster and grip better because of a mechanism called granular jamming that allows granular media, in this case the coffee grounds, to go back and forth between behaving like a solid and behaving like a liquid. When the feet hit the ground, they firm up, conforming to the ground underneath and providing solid footing. They then unjam and loosen up when transitioning between steps. The support structures help the flexible feet remain stiff while jammed.

It's the first time that such feet have been tested on uneven terrain, like gravel and wood chips.

The feet were installed on a commercially available hexapod robot. Researchers designed and built an on-board system that can generate negative pressure to control the jamming of the feet, as well as positive pressure to unjam the feet between each step. As a result, the feet can be actively jammed, with a vacuum pump removing air from between the coffee grounds and stiffening the foot. But the feet also can be passively jammed, when the weight of the robot pushes the air out from between the coffee grounds inside, causing them to stiffen.

Researchers tested the robot walking on flat ground, wood chips and pebbles, with and without the feet. They found that passive jamming feet perform best on flat ground but active jamming feet do better on loose rocks. The feet also helped the robot's legs grip the ground better, increasing its speed. The improvements were particularly significant when the robot walked up sloped, uneven terrain.

"The natural world is filled with challenging grounds for walking robots - -slippery, rocky, and squishy substrates all make walking complicated," said Nick Gravish, a professor in the UC San Diego Department of Mechanical and Aerospace Engineering and study coauthor. "Feet that can adapt to these different types of ground can help robots improve mobility."

In a companion paper co-authored by Tolley and Gravish with Ph.D. student Shivan Chopra as first author, researchers quantified exactly how much improvement each foot generated. For example, the foot reduced by 62 percent the depth of penetration in the sand on impact; and reduced by 98 percent the force required to pull the foot out when compared to a fully rigid foot.

Next steps include incorporating soft sensors on the bottom of the feet to allow an electronic control board to identify what kind of ground the robot is about to step on and whether the feet need to be jammed actively or passively.

Researchers will also keep working to improve design and control algorithms to make the feet more efficient.

Research Report: "Shear Strengthened Granular Jamming Feet for Improved Performance over Natural Terrain"


Related Links
University Of California - San Diego
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Denmark develops robot to conduct coronavirus tests
Copenhagen (AFP) May 27, 2020
Danish researchers have developed a robot capable of carrying out COVID-19 screening tests, the University of Southern Denmark announced on Wednesday. Using a 3D-printed disposable arm that is automatically swapped after every patient, the robot takes a throat swab and then places the sample in a jar, the research laboratory explained. "Robotics researchers... have developed the world's first fully automatic robot capable of carrying out throat swabs for COVID-19, so that healthcare professional ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
How drones can monitor explosive volcanoes

Northrop Grumman supports government flight testing of the MQ-8C Fire Scout Radar

FLIR to supply Black Hornet Nano-UAV Systems for US Army's Soldier Borne Sensor Program

Textron nabs $20.7M contract modification for Navy drone program

ROBO SPACE
CSIRO uncovers innovative approach to gold exploration

Amazon puts heat on eSports giants with 'Crucible'

Controlling artificial cilia with magnetic fields and light

The flame of discovery grows as Saffire sets new fires in space

ROBO SPACE
Xilinx 'lifts off' with launch of industry's first 20nm space-grade FPGA for space applications

'One-way' electronic devices enter the mainstream

Huawei says 'survival' at stake after US chip restrictions

Scientists break the link between a quantum material's spin and orbital states

ROBO SPACE
Framatome to provide engineering services to EDF in the United Kingdom

EDF submits plans for controversial UK nuclear plant

US awards two projects utilizing the BWRX-300 Small Modular Reactor Design

Study reveals single-step strategy for recycling used nuclear fuel

ROBO SPACE
FBI says Texas navy base shooting is 'terrorism-related'

Sri Lanka president warns UN over war crimes claims

Bosnian protests at Mass for Croatia's pro-Nazi WWII regime

Confessions of a Colombian extrajudicial killer commander

ROBO SPACE
World needs 'green recovery', health pros tell G20 leaders

UK electricity plant nears full switch away from coal

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

ROBO SPACE
Discovery about the edge of fusion plasma could help realize fusion power

Skoltech scientists show a promising solid electrolyte is 'hydrophobic'

Electrons break rotational symmetry in exotic low-temp superconductor

Surrey unveils fast-charging super-capacitor technology

ROBO SPACE
China space program targets July launch for Mars mission

More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.