Robot Technology News  
ROBO SPACE
Stanford engineers create shape-changing, free-roaming soft robot
by Staff Writers
Stanford UK (SPX) Mar 19, 2020

Graduate students Zachary Hammond (on left) and Nathan Usevitch pick up and move the isoperimetric robot, demonstrating that it is lightweight, resistant to damage and safe around humans.

Advances in soft robotics could someday allow robots to work alongside humans, helping them lift heavy objects or carrying them out of danger. As a step toward that future, Stanford University researchers have developed a new kind of soft robot that, by borrowing features from traditional robotics, is safe while still retaining the ability to move and change shape.

"A significant limitation of most soft robots is that they have to be attached to a bulky air compressor or plugged into a wall, which prevents them from moving," said Nathan Usevitch, a graduate student in mechanical engineering at Stanford. "So, we wondered: What if we kept the same amount of air within the robot all the time?"

From that starting point, the researchers ended up with a human-scale soft robot that can change its shape, allowing it to grab and handle objects and roll in controllable directions. Their invention is described in a paper published March 18 in Science Robotics.

"The casual description of this robot that I give to people is Baymax from the movie Big Hero 6 mixed with Transformers. In other words, a soft, human-safe robot mixed with robots that can dramatically change their shape," said Usevitch.

A combination of many robots
The simplest version of this squishy robot is an inflated tube that runs through three small machines that pinch it into a triangle shape. One machine holds the two ends of the tube together; the other two drive along the tube, changing the overall shape of the robot by moving its corners. The researchers call it an "isoperimetric robot" because, although the shape changes dramatically, the total length of the edges - and the amount of air inside - remains the same.

The isoperimetric robot is a descendent of three types of robots: soft robots, truss robots and collective robots. Soft robots are lightweight and compliant, truss robots have geometric forms that can change shape and collective robots are small robots that work together, making them particularly strong in the face of single-part failures.

"We're basically manipulating a soft structure with traditional motors," said Sean Follmer, assistant professor of mechanical engineering and co-senior author of the paper. "It makes for a really interesting class of robots that combines many of the benefits of soft robots with all of the knowledge we have about more classic robots."

To make a more complex version of the robot, the researchers simply attach several triangles together. By coordinating the movements of the different motors, they can cause the robot to perform different behaviors, such as picking up a ball by engulfing it on three sides or altering the robot's center of mass to make it roll.

"A key understanding we developed was that to create motion with a large, soft pneumatic robot, you don't actually need to pump air in and out," said Elliot Hawkes, assistant professor of mechanical engineering at the University of California, Santa Barbara and co-senior author of the paper. "You can use the air you already have and just move it around with these simple motors; this method is more efficient and lets our robot move much more quickly."

From outer space to your living room
The field of soft robotics is relatively young, which means people are still figuring out the best applications for these new creations. Their safe-but-sturdy softness may make them useful in homes and workplaces, where traditional robots could cause injury. Squishy robots are also appealing as tools for disaster response.

Other exciting possibilities for the isoperimetric robot could lie off-planet. "This robot could be really useful for space exploration - especially because it can be transported in a small package and then operates untethered after it inflates," said Zachary Hammond, a graduate student in mechanical engineering at Stanford and co-lead author of the paper, with Usevitch. "On another planet, it could use its shape-changing ability to traverse complicated environments, squeezing through tight spaces and spreading over obstacles."

For now, the researchers are experimenting with different shapes for their supple robot and considering plopping it in water to see if it can swim. They are also exploring even more new soft robot types, each with their own features and benefits.

"This research highlights the power of thinking about how to design and build robots in new ways," said Allison Okamura, professor of mechanical engineering and co-author of the paper. "The creativity of robot design is expanding with this type of system and that's something we'd really like to encourage in the robotics field."

Research paper


Related Links
Stanford University
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
High School students vie for a win in robotics competition
Pasadena CA (JPL) Mar 11, 2020
The tension was palpable as six student-built robots vied for dominance at the Da Vinci Schools arena in El Segundo, California, in the second round of the best-of-three final match. Since the Red Alliance had won the first, the Blue Alliance needed a win the second. But as the two-minute round concluded, it was clear that the Red Alliance's victory was assured, and the cheers of hundreds of students, mentors and spectators erupted from the stands. This action-packed finale marked the culmination ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Skyryse introduces automation flight operating system FlightOS

Hughes awarded contract by GA-ASI to connect US Army's Gray Eagle UAV with future SatComs

Turkish drones kill 19 Syrian government soldiers as tensions soar

Navy installs ODIN laser weapon system to counter aerial drones

ROBO SPACE
Discovery points to origin of mysterious ultraviolet radiation

World Centric announces new World Centric leaf fiber lids

Creating custom light using 2D materials

Raytheon awarded $17 million for dual band radar spares for USS Ford

ROBO SPACE
Semiconductors can behave like metals and even like superconductors

The ink of the future in printed electronics

A small step for atoms, a giant leap for microelectronics

Bristol scientists demonstrate first non-volatile nano relay operation at 200C

ROBO SPACE
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Atomic fingerprint identifies emission sources of uranium

US military plans portable mini nuclear power plants

Pentagon seeks designs for portable nuclear reactors

ROBO SPACE
New Zealand security response to mosque attacks spurs debate

SOUTHCOM commander: DoD to 'right-size' staffing at Guantanamo Bay

Iraqi IS man charged with genocide in Yazidi 'slave' case

Audit: U.S. failed to account for nearly $715M in arms to fight ISIS

ROBO SPACE
Czech PM urges EU to shelve Green Deal amid virus

Brussels not dropping Green Deal despite virus

Brexit and Its Impact on Green Energy Projects

Daimler targets 20% cut in European CO2 output for 2020

ROBO SPACE
Ballard announces order from Solaris for 25 fuel cell modules to power buses

Corvus signs contract for delivery of ESS for coastal cargo carrier with Westcon Power and Automation

New catalyst provides boost to next-generation EV batteries

Geothermal energy: Unlimited renewable energy for our homes

ROBO SPACE
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.