Robot Technology News  
ROBO SPACE
Soft robots that grip with the right amount of force
by Rachel Gordon | MIT CSAIL
Boston MA (SPX) Sep 27, 2022

A soft bubble gripper grasps a squeegee with the right amount of force to wipe up a spilled liquid.

Tool use has long been a hallmark of human intelligence, as well as a practical problem to solve for a vast array of robotic applications. But machines are still wonky at exerting just the right amount of force to control tools that aren't rigidly attached to their hands.

To manipulate said tools more robustly, researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), in collaboration with the Toyota Research Institute (TRI), have designed a system that can grasp tools and apply the appropriate amount of force for a given task, like squeegeeing up liquid or writing out a word with a pen.

The system, dubbed Series Elastic End Effectors, or SEED, uses soft bubble grippers and embedded cameras to map how the grippers deform over a six-dimensional space (think of an airbag inflating and deflating) and apply force to a tool. Using six degrees of freedom, the object can be moved left and right, up or down, back and forth, roll, pitch, and yaw. The closed-loop controller - a self-regulating system that maintains a desired state without human interaction - uses SEED and visuotactile feedback to adjust the position of the robot arm in order to apply the desired force.

This could be useful, for example, for someone using tools when there's uncertainty in the height of a table, since a pre-programmed trajectory might miss the table completely. "We've been heavily relying on the work of Mason, Raibert, and Craig on what we call a hybrid force position controller," says Hyung Ju Suh, a PhD student in electrical engineering and computer science at MIT, CSAIL affiliate, and lead author on a new paper about SEED. "That's the idea, that if you actually had three dimensions to move in when you're writing on a chalkboard, you want to be able to control position on some of the axes, while controlling force on the other axis."

Rigid-bodied robots and their counterparts can only take us so far; softness and compliance affords the luxury and ability to deform, to sense the interaction between the tool and the hand.

With SEED, every execution the robot senses is a recent 3D image from the grippers, thereby tracking in real-time how the grippers are changing shape around an object. These images are used to reconstruct the position of the tool, and the robot uses a learned model to map the position of the tool to the measured force. The learned model is obtained using the robot's previous experience, where it disturbs a force torque sensor to figure out how stiff the bubble grippers are. Now, once the robot has sensed the force, it will compare that with the force that the user commands, and maybe say to itself, "it turns out the force that I'm sensing right now is not quite there. I need to press harder." It would then move in the direction to increase the force, all done over 6D space.

During the "squeegee task," SEED was provided the right amount of force to wipe up some liquid on a plane, where baseline methods struggled to get the right sweep. When asked to put paper to pen, the bot effectively wrote out "MIT," and it was also able to apply the right amount of force to drive a screw.

While SEED was aware of the fact that it needs to command the force or torque for a given task, if grasped too hard, the item would inevitably slip, so there's an upper limit on that exerted hardness. Also, if you're a stiff robot, you can simulate softer systems than your natural mechanical stiffness - but not the other way around.

Currently, the system assumes a very specific geometry for the tools: it has to be cylindrical, and there are still many limitations on how it may generalize when it meets new types of shapes. Forthcoming work might involve generalizing the framework to different shapes so it can handle arbitrary tools in the wild.

"Nobody will be surprised that compliance can help with tools, or that force sensing is a good idea; the question here is where on the robot the compliance should go and how soft it should be," says paper co-author Russ Tedrake, the Toyota Professor of Electrical Engineering and Computer Science, Aeronautics and Astronautics, and Mechanical Engineering at MIT and a principal investigator at CSAIL. "Here we explore regulating a quite-soft six degree-of-freedom stiffness directly at the hand/tool interface, and show that there are some nice advantages to do that."

Suh wrote the paper alongside Naveen Kuppuswamy, a senior research scientist at Toyota Research Institute; Tao Pang, mechanical engineering PhD student at MIT and CSAIL affiliate; Paul Mitiguy and Alex Alspach of the TRI; and Tedrake. They will present the work at the IEEE/RSJ International Conference on Intelligent Robots and Systems conference in October.

Toyota Research Institute provided funds to support this work.


Related Links
Computer Science and Artificial Intelligence Laboratory
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Four-legged jumping robots LEAP to explore the Moon
Brussels, Belgium (SPX) Sep 22, 2022
A four-legged robot trained through artificial intelligence has learned the same lesson as the Apollo astronauts - that jumping can be the best way to move around on the surface the Moon. An update on LEAP (Legged Exploration of the Aristarchus Plateau), a mission concept study funded by ESA to explore some of the most challenging lunar terrains, has been presented at the Europlanet Science Congress (EPSC) 2022 in Granada by Patrick Bambach. "LEAP's target is the Aristarchus plateau, a region of t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Iranian drones bring back fear for Ukrainians

Northrop Grumman unveils first Australian MQ-4C Triton

GMV wins the contract for the EURODRONE flight control Computer

US sanctions Iranian company that shipped drones to Russia

ROBO SPACE
Exploring virtual reality's future in air travel

SpaceChain and SpaceBelt to foster digital asset storage and payment services in new space economy

Google shutting down cloud gaming service Stadia

Outpost signs NASA agreement to return satellites and cargo from space

ROBO SPACE
Artificial synaptic semiconductor device latest in next-generation brain-mimicking computing

Foxconn strikes $19.4 bn deal to make chips in India

US must be 'at the table' in semiconductor field: Blinken

Making mini-magnets

ROBO SPACE
Hungary opposes EU sanctions on Russian nuclear sector

Germany to keep nuclear plants on over French reactor woes

Belgium shuts down nuclear reactor despite energy doubts

Europe's biggest nuclear reactor reaches full power

ROBO SPACE
US CENTCOM urges nations to bring IS relatives home from Syria

Escalating evidence of crimes in Myanmar: UN investigators

Nepal laws will leave civil war crimes unpunished: rights groups

Myanmar military landmine use amounts to war crimes: Amnesty

ROBO SPACE
Climate activists block superyacht marina in French Riviera

White House rebukes World Bank chief in climate row

Rich nations to face climate pressure at pre-COP27 talks in DR Congo

Pressure grows after World Bank chief dodges climate questions

ROBO SPACE
CoBra supports the thermal transition in industry

The process of waves carrying plasma heat is observed for the first time in the world

Recycling materials: turning old batteries into new ones

Mongolia completes rail crossing with China to boost coal exports

ROBO SPACE
Space missions bring Down-to-Earth benefits

Shenzhou XIV astronauts in 4-hour spacewalk

China's manned space program attracts more public attention

Shenzhou astronauts carry out second spacewalk









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.