Robot Technology News
ROBO SPACE
Finger-shaped sensor enables more dexterous robots
MIT researchers have developed a camera-based touch sensor that is long, curved, and shaped like a human finger. Their device, which provides high-resolution tactile sensing over a large area, could enable a robotic hand to perform multiple types of grasps.
Finger-shaped sensor enables more dexterous robots
by Adam Zewe for MIT News
Boston MA (SPX) Oct 05, 2023

Imagine grasping a heavy object, like a pipe wrench, with one hand. You would likely grab the wrench using your entire fingers, not just your fingertips. Sensory receptors in your skin, which run along the entire length of each finger, would send information to your brain about the tool you are grasping.

In a robotic hand, tactile sensors that use cameras to obtain information about grasped objects are small and flat, so they are often located in the fingertips. These robots, in turn, use only their fingertips to grasp objects, typically with a pinching motion. This limits the manipulation tasks they can perform.

MIT researchers have developed a camera-based touch sensor that is long, curved, and shaped like a human finger. Their device provides high-resolution tactile sensing over a large area. The sensor, called the GelSight Svelte, uses two mirrors to reflect and refract light so that one camera, located in the base of the sensor, can see along the entire finger's length.

In addition, the researchers built the finger-shaped sensor with a flexible backbone. By measuring how the backbone bends when the finger touches an object, they can estimate the force being placed on the sensor.

They used GelSight Svelte sensors to produce a robotic hand that was able to grasp a heavy object like a human would, using the entire sensing area of all three of its fingers. The hand could also perform the same pinch grasps common to traditional robotic grippers.

"Because our new sensor is human finger-shaped, we can use it to do different types of grasps for different tasks, instead of using pinch grasps for everything. There's only so much you can do with a parallel jaw gripper. Our sensor really opens up some new possibilities on different manipulation tasks we could do with robots," says Alan (Jialiang) Zhao, a mechanical engineering graduate student and lead author of a paper on GelSight Svelte.

Zhao wrote the paper with senior author Edward Adelson, the John and Dorothy Wilson Professor of Vision Science in the Department of Brain and Cognitive Sciences and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL). The research will be presented at the IEEE Conference on Intelligent Robots and Systems.

Mirror mirror
Cameras used in tactile sensors are limited by their size, the focal distance of their lenses, and their viewing angles. Therefore, these tactile sensors tend to be small and flat, which confines them to a robot's fingertips.

With a longer sensing area, one that more closely resembles a human finger, the camera would need to sit farther from the sensing surface to see the entire area. This is particularly challenging due to size and shape restrictions of a robotic gripper.

Zhao and Adelson solved this problem using two mirrors that reflect and refract light toward a single camera located at the base of the finger.

GelSight Svelte incorporates one flat, angled mirror that sits across from the camera and one long, curved mirror that sits along the back of the sensor. These mirrors redistribute light rays from the camera in such a way that the camera can see the along the entire finger's length.

To optimize the shape, angle, and curvature of the mirrors, the researchers designed software to simulate reflection and refraction of light.

"With this software, we can easily play around with where the mirrors are located and how they are curved to get a sense of how well the image will look after we actually make the sensor," Zhao explains.

The mirrors, camera, and two sets of LEDs for illumination are attached to a plastic backbone and encased in a flexible skin made from silicone gel. The camera views the back of the skin from the inside; based on the deformation, it can see where contact occurs and measure the geometry of the object's contact surface.

In addition, the red and green LED arrays give a sense of how deeply the gel is being pressed down when an object is grasped, due to the saturation of color at different locations on the sensor.

The researchers can use this color saturation information to reconstruct a 3D depth image of the object being grasped.

The sensor's plastic backbone enables it to determine proprioceptive information, such as the twisting torques applied to the finger. The backbone bends and flexes when an object is grasped. The researchers use machine learning to estimate how much force is being applied to the sensor, based on these backbone deformations.

However, combining these elements into a working sensor was no easy task, Zhao says.

"Making sure you have the correct curvature for the mirror to match what we have in simulation is pretty challenging. Plus, I realized there are some kinds of superglue that inhibit the curing of silicon. It took a lot of experiments to make a sensor that actually works," he adds.

Versatile grasping
Once they had perfected the design, the researchers tested the GelSight Svelte by pressing objects, like a screw, to different locations on the sensor to check image clarity and see how well it could determine the shape of the object.

They also used three sensors to build a GelSight Svelte hand that can perform multiple grasps, including a pinch grasp, lateral pinch grasp, and a power grasp that uses the entire sensing area of the three fingers. Most robotic hands, which are shaped like parallel jaw drippers, can only perform pinch grasps.

A three-finger power grasp enables a robotic hand to hold a heavier object more stably. However, pinch grasps are still useful when an object is very small. Being able to perform both types of grasps with one hand would give a robot more versatility, he says.

Moving forward, the researchers plan to enhance the GelSight Svelte so the sensor is articulated and can bend at the joints, more like a human finger.

"Optical-tactile finger sensors allow robots to use inexpensive cameras to collect high-resolution images of surface contact, and by observing the deformation of a flexible surface the robot estimates the contact shape and forces applied. This work represents an advancement on the GelSight finger design, with improvements in full-finger coverage and the ability to approximate bending deflection torques using image differences and machine learning," says Monroe Kennedy III, assistant professor of mechanical engineering at Stanford University, who was not involved with this research. "Improving a robot's sense of touch to approach human ability is a necessity and perhaps the catalyst problem for developing robots capable of working on complex, dexterous tasks."

This research is supported, in part, by the Toyota Research Institute.

Research Report:"GelSight Svelte: A Human Finger-shaped Single-camera Tactile Robot Finger with Large Sensing Coverage and Proprioceptive Sensing"

Research Report:"GelSight Svelte Hand: A Three-finger, Two-DoF, Tactile-rich, Low-cost Robot Hand for Dexterous Manipulation"

Related Links
Computer Science and Artificial Intelligence Laboratory
All about the robots on Earth and beyond!

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROBO SPACE
MilliMobile is a tiny, self-driving robot powered only by light and radio waves
Seattle WA (SPX) Oct 02, 2023
Small mobile robots carrying sensors could perform tasks like catching gas leaks or tracking warehouse inventory. But moving robots demands a lot of energy, and batteries, the typical power source, limit lifetime and raise environmental concerns. Researchers have explored various alternatives: affixing sensors to insects, keeping charging mats nearby, or powering the robots with lasers. Each has drawbacks. Insects roam. Chargers limit range. Lasers can burn people's eyes. Researchers at the Univer ... read more

ROBO SPACE
AI drones to help farmers optimize vegetable yields

Northrop Grumman to deliver in country maintenance for the Triton UAV sustainment

Ukraine war pushes NATO to bolster drone-tackling expertise

Ukraine says 17 of 24 Russian drones destroyed overnight

ROBO SPACE
Metal-loving microbes could replace chemical processing of rare earths

Material matters

Mineral-hungry clean tech sees countries seeking to escape China's shadow

Green issues dominate Paris fashion as green tech marketplace debuts

ROBO SPACE
EU moves to protect sensitive tech from rivals, China

Simulations reveal the atomic-scale story of qubits

AI chip crunch: startups vie for Nvidia's vital component

Atomic layer deposition route to scalable, electronic-grade van der Waals Te thin films

ROBO SPACE
China fosters new-generation nuclear power reactors

Chi-Nu experiment ends with data to support nuclear security, energy reactors

Poland signs deal with Westinghouse for first nuclear power plant

Framatome awarded DoE contract to advance Digital Twin-based Diagnostics

ROBO SPACE
ISIS official captured in northern Syria helicopter raid: US

U.N. report accuses Russia of 'widespread and systematic' torture in Ukraine

U.S. blacklists family network funding Hezbollah in Latin America

UK terror suspect in court over prison escape

ROBO SPACE
Vietnam confirms arrest of energy think tank chief

Eurozone firms fret over stricter climate standards: survey

Decarbonising shipping to cost over $100 bn per year: UN

Macron promises heat pump boost in French climate plan

ROBO SPACE
Superconductivity at room temperature remains elusive

France taps nuclear know-how to recycle electric car batteries

New approach may help extract more heat from geothermal reservoirs

Warming up! 30 years of fusion-energy research at EPFL

ROBO SPACE
Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.