Robot Technology News  
ROBO SPACE
Developing algorithms that make decisions aligned with human experts
by Staff Writers
Washington DC (SPX) Mar 07, 2022

New effort seeks to build trusted AI decision-makers for scenarios where ground truth doesn't exist

Military operations - from combat, to medical triage, to disaster relief - require complex and rapid decision-making in dynamic situations where there is often no single right answer. Two seasoned military leaders facing the same scenario on the battlefield, for example, may make different tactical decisions when faced with difficult options. As AI systems become more advanced in teaming with humans, building appropriate human trust in the AI's abilities to make sound decisions is vital. Capturing the key characteristics underlying expert human decision-making in dynamic settings and computationally representing that data in algorithmic decision-makers may be an essential element to ensure algorithms would make trustworthy choices under difficult circumstances.

DARPA announced the In the Moment (ITM) program, which seeks to quantify the alignment of algorithms with trusted human decision-makers in difficult domains where there is no agreed upon right answer. ITM aims to evaluate and build trusted algorithmic decision-makers for mission-critical Department of Defense (DoD) operations.

"ITM is different from typical AI development approaches that require human agreement on the right outcomes," said Matt Turek, ITM program manager. "The lack of a right answer in difficult scenarios prevents us from using conventional AI evaluation techniques, which implicitly requires human agreement to create ground-truth data."

To illustrate, self-driving car algorithms can be based on ground truth for right and wrong driving responses based on traffic signs and rules of the road that don't change. One feasible approach in those scenarios is hard-coding risk values into the simulation environment used to train self-driving car algorithms.

"Baking in one-size-fits-all risk values won't work from a DoD perspective because combat situations evolve rapidly, and commander's intent changes from scenario to scenario," Turek said. "The DoD needs rigorous, quantifiable, and scalable approaches to evaluating and building algorithmic systems for difficult decision-making where objective ground truth is unavailable. Difficult decisions are those where trusted decision-makers disagree, no right answer exists, and uncertainty, time-pressure, and conflicting values create significant decision-making challenges."

ITM is taking inspiration from the medical imaging analysis field, where techniques have been developed for evaluating systems even when skilled experts may disagree on ground truth. For example, the boundaries of organs or pathologies can be unclear or disputed among radiologists. To overcome the lack of a true boundary, an algorithmically drawn boundary is compared to the distribution of boundaries drawn by human experts. If the algorithm's boundary lies within the distribution of boundaries drawn by human experts over many trials, the algorithm is said to be comparable to human performance.

"Building on the medical imaging insight, ITM will develop a quantitative framework to evaluate decision-making by algorithms in very difficult domains," Turek said. "We will create realistic, challenging decision-making scenarios that elicit responses from trusted humans to capture a distribution of key decision-maker attributes. Then we'll subject a decision-making algorithm to the same challenging scenarios and map its responses into the reference distribution to compare it to the trusted human decision-makers."

The program has four technical areas. The first is developing decision-maker characterization techniques that identify and quantify key decision-maker attributes in difficult domains. The second technical area is creating a quantitative alignment score between a human decision-maker and an algorithm in ways that are predictive of end-user trust. A third technical area is responsible for designing and executing the program evaluation. The final technical area is responsible for policy and practice integration; providing legal, moral, and ethical expertise to the program; supporting the development of future DoD policy and concepts of operations (CONOPS); overseeing development of an ethical operations process (DevEthOps); and conducting outreach events to the broader policy community.

ITM is a 3.5-year program encompassing two phases with potential for a third phase devoted to maturing the technology with a transition partner. The first phase is 24-months long and focuses on small-unit triage as the decision-making scenario. Phase 2 is 18-months long and increases decision-making complexity by focusing on mass-casualty events.

To evaluate the whole ITM process, multiple human and algorithmic decision-makers will be presented scenarios from the medical triage (Phase 1) or mass casualty (Phase 2) domains. Algorithmic decision-makers will include an aligned algorithmic decision-maker with knowledge of key human decision-making attributes and a baseline algorithmic decision-maker with no knowledge of those key human attributes. A human triage professional will also be included as an experimental control.

"We're going to collect the decisions, the responses from each of those decision-makers, and present those in a blinded fashion to multiple triage professionals," Turek said. "Those triage professionals won't know whether the response comes from an aligned algorithm or a baseline algorithm or from a human. And the question that we might pose to those triage professionals is which decision-maker would they delegate to, providing us a measure of their willingness to trust those particular decision-makers."


Related Links
Defense Advanced Research Projects Agency
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Injecting fairness into machine-learning models
Boston MA (SPX) Mar 07, 2022
If a machine-learning model is trained using an unbalanced dataset, such as one that contains far more images of people with lighter skin than people with darker skin, there is serious risk the model's predictions will be unfair when it is deployed in the real world. But this is only one part of the problem. MIT researchers have found that machine-learning models that are popular for image recognition tasks actually encode bias when trained on unbalanced data. This bias within the model is impossi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Extending the battery life of small drones

AFRL awards contract for the Mjolnir anti-drone project

European nations sign 7-bn-euro drone contract

UAE drone conference warns of rising threat

ROBO SPACE
Chile: Copper, quakes and inequality

The untapped nitrogen reservoir

Tiny switches give solid-state LiDAR record resolution

'Chemical recycling' of plastic slammed by environmental group

ROBO SPACE
Magnetic excitations could provide information transfer without heat loss

DLR and NASA are jointly developing a software package for quantum computers

Using two different elements in hybrid atomic quantum computers

NGI uses twist to engineer 2D semiconductors with built-in memory functions

ROBO SPACE
Chernobyl power cut, transmission lost at Europe's largest atomic plant: IAEA

UN watchdog urges Russia, Ukraine to agree on nuclear safety

German ministries back nuclear exit despite energy woes

Europe's largest nuclear plant at centre of Russia-Ukraine war

ROBO SPACE
Russia backs jail time for 'fake' army news, restricts media

'Incredibly complex': the US raid that killed IS chief

US raid on IS leader boosts Biden's foreign policy stature

US woman charged with aiding IS, planning attacks

ROBO SPACE
Study reveals small-scale renewables could cause power failures

The road to renewable energy in Japan, a top CO2 emitter

CO2 emissions from energy sector rise by record 2 bn tonnes in 2021: IEA

Will Ukraine war help or hinder green energy transition?

ROBO SPACE
Safer, more powerful batteries for electric cars, power grid

Blowing dust to cool fusion plasmas

New paper offers innovative solution for thermal energy storage

Toward batteries that pack twice as much energy per pound

ROBO SPACE
China establishes deep space exploration laboratory

China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

China welcomes cooperation on space endeavors

China Focus: China to explore lunar polar regions, mulling human landing: white paper









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.