'Chaotic' way to create insectlike gaits for robots by Staff Writers Washington DC (SPX) Dec 16, 2020
Researchers in Japan and Italy are embracing chaos and nonlinear physics to create insectlike gaits for tiny robots - complete with a locomotion controller to provide a brain-machine interface. Biology and physics are permeated by universal phenomena fundamentally grounded in nonlinear physics, and it inspired the researchers' work. In the journal Chaos, from AIP Publishing, the group describes using the Rossler system, a system of three nonlinear differential equations, as a building block for central pattern generators (CPGs) to control the gait of a robotic insect. "The universal nature of underlying phenomena allowed us to demonstrate that locomotion can be achieved via elementary combinations of Rossler systems, which represent a cornerstone in the history of chaotic systems," said Ludovico Minati, of Tokyo Institute of Technology and the University of Trento. Phenomena related to synchronization allow the group to create very simple networks that generate complex rhythmic patterns. "These networks, CPGs, are the basis of legged locomotion everywhere within nature," he said. The researchers started with a minimalistic network in which each instance is associated with one leg. Changing the gait or creating a new one can be accomplished by simply making small changes to the coupling and associated delays. In other words, irregularity can be added by making individual systems or the entire network more chaotic. For nonlinear systems, a change of output is not proportional to a change of input. This work shows that the Rossler system, beyond its many interesting and intricate properties, "can also be successfully used as a substrate to construct a bioinspired locomotion controller for an insect robot," Minati said. Their controller is built with an electroencephalogram to enable a brain-computer interface. "Neuroelectrical activity from a person is recorded and nonlinear concepts of phase synchronization are used to extract a pattern," said Minati. "This pattern is then used as a basis to influence the dynamics of the Rossler systems, which generate the walking pattern for the insect robot." The researchers tap into the fundamental ideas of nonlinear dynamics twice. "First, we use them to decode biological activity, then in the opposite direction to generate bioinspired activity," he said. The key implication of this work is that it "demonstrates the generality of nonlinear dynamic concepts such as the ability of the Rossler system, which is often studied in an abstract scenario," Minati said, "but is used here as a basis to generate biologically plausible patterns."
Research Report: "Generation of diverse insect-like gait patterns using networks of coupled Rossler systems"
Northrop Grumman invests in Deepwave Digital's AI Redondo Beach CA (SPX) Dec 16, 2020 Northrop Grumman is set to begin collaborating and investing in Deepwave Digital, to support research, development and integration of artificial intelligence (AI) technologies. This partnership will improve communications processing power for key, next-generation capabilities for customers. "We're evolving the way we think and the way we work, to use emerging commercial technologies to provide our warfighters the most advanced capabilities more quickly," said Chris Daughters, vice president of res ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |