Robot Technology News  
ROBO SPACE
Artificial skin brings robots closer to 'touching' human lives
by Staff Writers
Nomi, Japan (SPX) Feb 04, 2021

The artificial sensing system TacLINK can collect and process tactile information using a stereo (3D) camera and a finite element model-based analysis.

Modern-day robots are often required to interact with humans intelligently and efficiently, which can be enabled by providing them the ability to perceive touch. However, previous attempts at mimicking human skin have involved bulky and complex electronics, wiring, and a risk of damage. In a recent study, researchers from Japan sidestep these difficulties by constructing a 3D vision-guided artificial skin that enables tactile sensing with high performance, opening doors to innumerable applications in medicine, healthcare, and industry.

Robots have come a long way since their original inception for high-speed automation. Today, robots can be found in a wide variety of roles in medicine, rehabilitation, agriculture, and marine navigation. Since a lot of these roles require human contact, robots are expected to become adept at interacting with humans in a safe and intelligent manner.

One way to accomplish this goal is by endowing robots with the ability to perceive touch. Accordingly, attempts have been made to develop artificial "skins" capable of inducing tactile sensations and allowing robots to be more aware of their surrounding environment, in the same way humans are. However, despite great advances in tactile sensor technology, the endeavor remains challenging.

"The main challenge lies in mimicking the inherent complexity of natural skin structure that has a particularly high density of mechanoreceptors with specialized functions such as sensing pressure, vibrations, temperature, and pain," says Associate Professor Van Anh Ho from Japan Advanced Institute of Science and Technology, where he leads a laboratory working on soft haptic technology.

He adds, "All approaches so far have only focused on developing a skin-like structure with a matrix of different sensors without considering the bulk of wires, electronic components, and the risk of damage from frequent contact."

In a new study published in IEEE Transactions on Robotics, Prof. Ho and his colleague Lac Van Duong, a doctoral student at JAIST, developed a high-performance, vision-based artificial sensing system that is low-cost, has a relative simple structure, and is scalable. Named TacLINK, this system can process tactile information and even determine contact force and contact geometry upon interacting with the surroundings.

The researchers based the structure of TacLINK essentially on a transparent acrylic tube (serving as a rigid bone frame) covered by a continuous soft artificial skin with a sensing area of about 500 cm2. They used silicone rubber to fabricate the artificial skin due to its high elasticity and smoothness.

Moreover, the material could be inflated to change its form and stiffness. The researchers printed an array of markers on the surface of this skin to track its deformation instead of embedding sensors or electronic components inside the skin. This greatly reduced its bulkiness, cost, and chances of possible damage.

The vision system consisted of two co-axial cameras arranged to form a stereo camera that tracked the 3D displacement of the markers on the inner wall of the skin. In addition, researchers employed a finite element model (FEM) to estimate the structural stiffness of the skin. By combining the data from both these sources, they were able to reconstruct the contact geometry and contact force distribution simultaneously. Moreover, unlike in previous studies, this method worked for multiple contact points.

With such positive outcomes, Prof. Ho is hopeful about the creation of a future generation of touch-sensing-enabled robotic devices. "The artificial skin used in our study can be easily fabricated by the casting method and can, therefore, be implemented on other parts of robots, such as fingers, legs, chests, and heads, and even for smart prosthetics for humans, allowing a disabled person to perceive sensations the same way as a normal human," comments Prof.

Ho excitedly. "In addition, it can also be used to design various sensory devices in medicine, healthcare, and industry. In fact, it is especially suited for the development of robotic systems in the post-COVID era to enable remote service with robotic avatars."

It certainly seems like the robots of the near future will be "touching" human lives more than ever before!

Research paper


Related Links
Japan Advanced Institute Of Science And Technology
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Motiv Space Systems and JPL to develop robotic arm for extreme cold environments
Pasadena CA (SPX) Jan 27, 2021
Motiv Space Systems, in partnership with JPL, has announced the development of COLDArm, the first-in-kind robotic arm that will be built to survive the extreme cold of the Moon's South Pole ushering in a new era of extended space exploration on the Moon, Mars, and beyond. COLDArm (short for Cold Operable Lunar Deployable Arm) is a vital component of the Commercial Lunar Payload Services (CLPS) a NASA program to send small robotic landers and rovers to the Moon, including its South Pole-a region kn ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Citadel Defense wins major contract for AI powered counter drone system

Unmanned aerial vehicles to scale new heights thanks to NASA

New drone program and bolster enterprise utilities management

Sagetech Avionics receives AFWERX contract from US Air Force

ROBO SPACE
Photonics research makes smaller, more efficient VR, augmented reality tech possible

In search of stable liquids

Simulating space at ESA's Materials and Electrical Components Laboratory

Ions in molten salts can go 'against the flow'

ROBO SPACE
'Quantum brain' promises more eco-friendly data centers

Liquid machine-learning system adapts to changing conditions

Embattled Intel says earnings better than expected

Transforming quantum computing's promise into practice

ROBO SPACE
Optimized LIBS technique improves analysis of nuclear reactor materials

Estonia's geology holds promise for nuclear waste disposal

France's EDF delays UK nuclear plant, as cost soars

Atomic design for a carbon-free planet

ROBO SPACE
UN says 12 murdered in Syria camp in two weeks

At packed hospitals, Iraqis lament blast as bitterly familiar

Metal detectors installed at doors of US House

Spain court remands three suspected IS members

ROBO SPACE
Getting to net zero and even negative is surprisingly feasible, and affordable

BlackRock pushes companies to set more ambitious climate targets

Rich nations 'hugely exaggerate' climate finance: study

China to launch carbon emissions trading scheme next month

ROBO SPACE
Batteries that can be assembled in ambient air

UMass Amherst researchers discover materials capable of self-propulsion

X-ray tomography helps reveal how solid state batteries charge, discharge

Physicists create tunable superconductivity in twisted graphene "nanosandwich"

ROBO SPACE
China's space station core module, cargo craft pass factory review

China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

Major space station components cleared for operations









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.