Artificial Intelligence learns better when distracted by Staff Writers Groningen, Netherlands (SPX) Aug 03, 2021
How should you train your AI system? This question is pertinent, because many deep learning systems are still black boxes. Computer scientists from the Netherlands and Spain have now determined how a deep learning system well suited for image recognition learns to recognize its surroundings. They were able to simplify the learning process by forcing the system's focus toward secondary characteristics. Convolutional Neural Networks (CNNs) are a form of bio-inspired deep learning in artificial intelligence. The interaction of thousands of 'neurons' mimics the way our brain learns to recognize images. 'These CNNs are successful, but we don't fully understand how they work', says Estefania Talavera Martinez, lecturer and researcher at the Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence of the University of Groningen in the Netherlands.
Food By using heat maps, she analysed which parts of the images were used by the CNNs to identify the setting. 'This led to the hypothesis that the system was not looking at enough details', she explains. For example, if an AI system has taught itself to use mugs to identify a kitchen, it will wrongly classify living rooms, offices and other places where mugs are used. The solution that was developed by Talavera Martinez and her colleagues David Morales (Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada) and Beatriz Remeseiro (Department of Computer Science, Universidad de Oviedo), both in Spain, is to distract the system from their primary targets.
Blurred The approach worked well in the standard image sets, and was also successful in the images Talavera Martinez had collected herself from the wearable cameras. 'Our training regime gives us results similar to other approaches, but is much simpler and requires less computing time.' Previous attempts to increase fine-grained classification included combining different sets of CNNs. The approach developed by Talavera Martinez and her colleagues is much more lightweight. 'This study gave us a better idea of how these CNNs learn, and that has helped us to improve the training program.' Playing to distraction: towards a robust training of CNN classifiers through visual explanation techniques.
Kitchen robot in Riga cooks up new future for fast food Riga (AFP) July 31, 2021 A pasta order comes in and the robotic arm springs into action at the Roboeatz eatery in Riga. After five minutes of gyrations, a piping hot plate is ready. The Riga cafe, located under a crumbling concrete bridge, is designed in such a way that customers can observe the robotic arm at work. It also has a seating area, although most customers prefer take away since vaccination certificates are required to be able to eat indoors in Latvia. A Roboeatz app allows customers to order and pay for ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |