Are babies the key to the next generation of artificial intelligence by Staff Writers Dublin, Ireland (SPX) Jun 24, 2022
Babies can help unlock the next generation of artificial intelligence (AI), according to Trinity College neuroscientists and colleagues who have just published new guiding principles for improving AI. The research, published in the journal 'Nature Machine Intelligence', examines the neuroscience and psychology of infant learning and distils three principles to guide the next generation of AI, which will help overcome the most pressing limitations of machine learning. Dr Lorijn Zaadnoordijk, Marie Sklodowska-Curie Research Fellow at Trinity College explained: "Artificial intelligence (AI) has made tremendous progress in the last decade, giving us smart speakers, autopilots in cars, ever-smarter apps, and enhanced medical diagnosis. These exciting developments in AI have been achieved thanks to machine learning which uses enormous datasets to train artificial neural network models. However, progress is stalling in many areas because the datasets that machines learn from must be painstakingly curated by humans. But we know that learning can be done much more efficiently, because infants don't learn this way! They learn by experiencing the world around them, sometimes by even seeing something just once," added Zaadnoordijk In their article "Lessons from infant learning for unsupervised machine learning", Dr Lorijn Zaadnoordijk and Professor Rhodri Cusack, from the Trinity College Institute of Neuroscience, and Dr Tarek R. Besold from TU Eindhoven, the Netherlands, argue that better ways to learn from unstructured data are needed. For the first time, they make concrete proposals about what particular insights from infant learning can be fruitfully applied in machine learning and how exactly to apply these learnings. Machines, they say, will need in-built preferences to shape their learning from the beginning. They will need to learn from richer datasets that capture how the world is looking, sounding, smelling, tasting and feeling. And, like infants, they will need to have a developmental trajectory, where experiences and networks change as they "grow up". Dr. Tarek R. Besold, Researcher, Philosophy and Ethics group at TU Eindhoven, said: "As AI researchers we often draw metaphorical parallels between our systems and the mental development of human babies and children. It is high time to take these analogies more seriously and look at the rich knowledge of infant development from psychology and neuroscience, which may help us overcome the most pressing limitations of machine learning." Professor Rhodri Cusack, The Thomas Mitchell Professor of Cognitive Neuroscience, Director of Trinity College Institute of Neuroscience, added: "Artificial neural networks were in parts inspired by the brain. Similar to infants, they rely on learning, but current implementations are very different from human (and animal) learning. Through interdisciplinary research, babies can help unlock the next generation of AI."
Research Report:Lessons from infant learning for unsupervised machine learning
Humans explaining self-explaining machines Bielefeld, Germany (SPX) Jun 24, 2022 Currently, a key question in AI research is how to arrive at comprehensible explanations of underlying machine processes: Should humans be able to explain how machines work, or should machines learn to explain themselves? 'The double-meaning of the name of our conference, "Explaining Machines," expresses these various possibilities: machines explaining themselves, humans explaining machines - or maybe both at the same time,' says Professor Dr. Elena Esposito. The Bielefeld sociologist is heading a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |