An easier way to teach robots new skills by Adam Zewe for MIT News Boston MA (SPX) Apr 26, 2022
With e-commerce orders pouring in, a warehouse robot picks mugs off a shelf and places them into boxes for shipping. Everything is humming along, until the warehouse processes a change and the robot must now grasp taller, narrower mugs that are stored upside down. Reprogramming that robot involves hand-labeling thousands of images that show it how to grasp these new mugs, then training the system all over again. But a new technique developed by MIT researchers would require only a handful of human demonstrations to reprogram the robot. This machine-learning method enables a robot to pick up and place never-before-seen objects that are in random poses it has never encountered. Within 10 to 15 minutes, the robot would be ready to perform a new pick-and-place task. The technique uses a neural network specifically designed to reconstruct the shapes of 3D objects. With just a few demonstrations, the system uses what the neural network has learned about 3D geometry to grasp new objects that are similar to those in the demos. In simulations and using a real robotic arm, the researchers show that their system can effectively manipulate never-before-seen mugs, bowls, and bottles, arranged in random poses, using only 10 demonstrations to teach the robot. "Our major contribution is the general ability to much more efficiently provide new skills to robots that need to operate in more unstructured environments where there could be a lot of variability. The concept of generalization by construction is a fascinating capability because this problem is typically so much harder," says Anthony Simeonov, a graduate student in electrical engineering and computer science (EECS) and co-lead author of the paper. Simeonov wrote the paper with co-lead author Yilun Du, an EECS graduate student; Andrea Tagliasacchi, a staff research scientist at Google Brain; Joshua B. Tenenbaum, the Paul E. Newton Career Development Professor of Cognitive Science and Computation in the Department of Brain and Cognitive Sciences and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL); Alberto Rodriguez, the Class of 1957 Associate Professor in the Department of Mechanical Engineering; and senior authors Pulkit Agrawal, a professor in CSAIL, and Vincent Sitzmann, an incoming assistant professor in EECS. The research will be presented at the International Conference on Robotics and Automation.
Grasping geometry To overcome this challenge, the researchers created a new type of neural network model, a Neural Descriptor Field (NDF), that learns the 3D geometry of a class of items. The model computes the geometric representation for a specific item using a 3D point cloud, which is a set of data points or coordinates in three dimensions. The data points can be obtained from a depth camera that provides information on the distance between the object and a viewpoint. While the network was trained in simulation on a large dataset of synthetic 3D shapes, it can be directly applied to objects in the real world. The team designed the NDF with a property known as equivariance. With this property, if the model is shown an image of an upright mug, and then shown an image of the same mug on its side, it understands that the second mug is the same object, just rotated. "This equivariance is what allows us to much more effectively handle cases where the object you observe is in some arbitrary orientation," Simeonov says. As the NDF learns to reconstruct shapes of similar objects, it also learns to associate related parts of those objects. For instance, it learns that the handles of mugs are similar, even if some mugs are taller or wider than others, or have smaller or longer handles. "If you wanted to do this with another approach, you'd have to hand-label all the parts. Instead, our approach automatically discovers these parts from the shape reconstruction," Du says. The researchers use this trained NDF model to teach a robot a new skill with only a few physical examples. They move the hand of the robot onto the part of an object they want it to grip, like the rim of a bowl or the handle of a mug, and record the locations of the fingertips. Because the NDF has learned so much about 3D geometry and how to reconstruct shapes, it can infer the structure of a new shape, which enables the system to transfer the demonstrations to new objects in arbitrary poses, Du explains.
Picking a winner Many baselines use 2D image information rather than 3D geometry, which makes it more difficult for these methods to integrate equivariance. This is one reason the NDF technique performed so much better. While the researchers were happy with its performance, their method only works for the particular object category on which it is trained. A robot taught to pick up mugs won't be able to pick up boxes or headphones, since these objects have geometric features that are too different than what the network was trained on. "In the future, scaling it up to many categories or completely letting go of the notion of category altogether would be ideal," Simeonov says. They also plan to adapt the system for nonrigid objects and, in the longer term, enable the system to perform pick-and-place tasks when the target area changes. "How efficiently we can teach robots new manipulation skills depends on the robots' ability to generalize from just a few demonstrations. This work shows how a robot can robustly transfer demonstrations of picking up or placing an object to previously unseen objects," says Dieter Fox, a professor of computer science and engineering at the University of Washington, who was not involved with this research. "This research leverages recent advances in deep learning for neural object representations and introduces several very clever innovations that make them well suited to imitation learning for robot manipulation. The real world experiments are extremely impressive and I expect that many researchers will build on top of these results." This work is supported, in part, by the Defense Advanced Research Projects Agency, the Singapore Defense Science and Technology Agency, and the National Science Foundation.
Research Report:"Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"
Molecular robots work cooperatively in swarms Sapporo, Japan (SPX) Apr 25, 2022 In a global first, scientists have demonstrated that molecular robots are able to accomplish cargo delivery by employing a strategy of swarming, achieving a transport efficiency five times greater than that of single robots. Swarm robotics is a new discipline, inspired by the cooperative behavior of living organisms, that focuses on the fabrication of robots and their utilization in swarms to accomplish complex tasks. A swarm is an orderly collective behavior of multiple individuals. Macro-scale s ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |