Robot Technology News  
ROBO SPACE
"Alexa, go to the kitchen and fetch me a snack"
by Jennifer Chu for MIT News
Boston MA (SPX) Jul 16, 2020

MIT researchers have developed a representation of spatial perception for robots that is modeled after the way humans perceive and navigate the world. The key component of the team's new model is Kimera, an open-source library that the team previously developed to simultaneously construct a 3D geometric model of an environment. Kimera builds a dense 3D semantic mesh of an environment and can track humans in the environment. The figure shows a multi-frame action sequence of a human moving in the scene.

Wouldn't we all appreciate a little help around the house, especially if that help came in the form of a smart, adaptable, uncomplaining robot? Sure, there are the one-trick Roombas of the appliance world. But MIT engineers are envisioning robots more like home helpers, able to follow high-level, Alexa-type commands, such as "Go to the kitchen and fetch me a coffee cup."

To carry out such high-level tasks, researchers believe robots will have to be able to perceive their physical environment as humans do.

"In order to make any decision in the world, you need to have a mental model of the environment around you," says Luca Carlone, assistant professor of aeronautics and astronautics at MIT. "This is something so effortless for humans. But for robots it's a painfully hard problem, where it's about transforming pixel values that they see through a camera, into an understanding of the world."

Now Carlone and his students have developed a representation of spatial perception for robots that is modeled after the way humans perceive and navigate the world.

The new model, which they call 3D Dynamic Scene Graphs, enables a robot to quickly generate a 3D map of its surroundings that also includes objects and their semantic labels (a chair versus a table, for instance), as well as people, rooms, walls, and other structures that the robot is likely seeing in its environment.

The model also allows the robot to extract relevant information from the 3D map, to query the location of objects and rooms, or the movement of people in its path.

"This compressed representation of the environment is useful because it allows our robot to quickly make decisions and plan its path," Carlone says. "This is not too far from what we do as humans. If you need to plan a path from your home to MIT, you don't plan every single position you need to take. You just think at the level of streets and landmarks, which helps you plan your route faster."

Beyond domestic helpers, Carlone says robots that adopt this new kind of mental model of the environment may also be suited for other high-level jobs, such as working side by side with people on a factory floor or exploring a disaster site for survivors.

He and his students, including lead author and MIT graduate student Antoni Rosinol, will present their findings this week at the Robotics: Science and Systems virtual conference.

A mapping mix
At the moment, robotic vision and navigation has advanced mainly along two routes: 3D mapping that enables robots to reconstruct their environment in three dimensions as they explore in real time; and semantic segmentation, which helps a robot classify features in its environment as semantic objects, such as a car versus a bicycle, which so far is mostly done on 2D images.

Carlone and Rosinol's new model of spatial perception is the first to generate a 3D map of the environment in real-time, while also labeling objects, people (which are dynamic, contrary to objects), and structures within that 3D map.

The key component of the team's new model is Kimera, an open-source library that the team previously developed to simultaneously construct a 3D geometric model of an environment, while encoding the likelihood that an object is, say, a chair versus a desk.

"Like the mythical creature that is a mix of different animals, we wanted Kimera to be a mix of mapping and semantic understanding in 3D," Carlone says.

Kimera works by taking in streams of images from a robot's camera, as well as inertial measurements from onboard sensors, to estimate the trajectory of the robot or camera and to reconstruct the scene as a 3D mesh, all in real-time.

To generate a semantic 3D mesh, Kimera uses an existing neural network trained on millions of real-world images, to predict the label of each pixel, and then projects these labels in 3D using a technique known as ray-casting, commonly used in computer graphics for real-time rendering.

The result is a map of a robot's environment that resembles a dense, three-dimensional mesh, where each face is color-coded as part of the objects, structures, and people within the environment.

A layered scene
If a robot were to rely on this mesh alone to navigate through its environment, it would be a computationally expensive and time-consuming task. So the researchers built off Kimera, developing algorithms to construct 3D dynamic "scene graphs" from Kimera's initial, highly dense, 3D semantic mesh.

Scene graphs are popular computer graphics models that manipulate and render complex scenes, and are typically used in video game engines to represent 3D environments.

In the case of the 3D dynamic scene graphs, the associated algorithms abstract, or break down, Kimera's detailed 3D semantic mesh into distinct semantic layers, such that a robot can "see" a scene through a particular layer, or lens. The layers progress in hierarchy from objects and people, to open spaces and structures such as walls and ceilings, to rooms, corridors, and halls, and finally whole buildings.

Carlone says this layered representation avoids a robot having to make sense of billions of points and faces in the original 3D mesh.

Within the layer of objects and people, the researchers have also been able to develop algorithms that track the movement and the shape of humans in the environment in real time.

The team tested their new model in a photo-realistic simulator, developed in collaboration with MIT Lincoln Laboratory, that simulates a robot navigating through a dynamic office environment filled with people moving around.

"We are essentially enabling robots to have mental models similar to the ones humans use," Carlone says. "This can impact many applications, including self-driving cars, search and rescue, collaborative manufacturing, and domestic robotics. Another domain is virtual and augmented reality (AR). Imagine wearing AR goggles that run our algorithm: The goggles would be able to assist you with queries such as 'Where did I leave my red mug?' and 'What is the closest exit?' You can think about it as an Alexa which is aware of the environment around you and understands objects, humans, and their relations."

"Our approach has just been made possible thanks to recent advances in deep learning and decades of research on simultaneous localization and mapping," Rosinol says. "With this work, we are making the leap toward a new era of robotic perception called spatial-AI, which is just in its infancy but has great potential in robotics and large-scale virtual and augmented reality."

This research was funded, in part, by the Army Research Laboratory, the Office of Naval Research, and MIT Lincoln Laboratory

Research Report: "3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans"


Related Links
MIT News Office
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Amid reckoning on police racism, algorithm bias in focus
Washington (AFP) July 5, 2020
A wave of protests over law enforcement abuses has highlighted concerns over artificial intelligence programs like facial recognition which critics say may reinforce racial bias. While the protests have focused on police misconduct, activists point out flaws that may lead to unfair applications of technologies for law enforcement, including facial recognition, predictive policing and "risk assessment" algorithms. The issue came to the forefront recently with the wrongful arrest in Detroit of an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
World entering new military 'drone age': UN expert

Northrop Grumman system to be interim anti-drone solution

State Department approves $23M sale of Black Hawk to Jordan

Hundreds of drones light up Seoul sky with virus messages

ROBO SPACE
Deutsche Bank teams up with Google in cloud services

Shock-dissipating fractal cubes could forge high-tech armor

Programmable balloons pave the way for new shape-morphing devices

Portable system boosts laser precision, at room temperature

ROBO SPACE
Scaling up the quantum chip

Magnetic memory states go exponential

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

Thermophones offer new route to radically simplify array design, research shows

ROBO SPACE
Reducing the costs of nuclear power

End of the line for France's oldest nuclear plant

X-energy Teams with NFI to fuel the High-Temperature Gas-Cooled Reactor in Japan

Framatome signs memorandum of understanding with Rosatom State Corporation

ROBO SPACE
Syria warned by chemical warfare watchdog over sarin attacks

Western powers seek condemnation of Syria over sarin attacks

US doubles reward for IS leader to $10 million

US soldier plotted to have unit attacked by jihadists: Justice

ROBO SPACE
Back clean energy post-virus, UN chief urges leaders

US energy laggards still not Paris compliant: analysis

Denmark readies increased carbon tax to promote energy transition

Climate change crisis requires less growth-oriented global economy

ROBO SPACE
New room-temperature liquid-metal battery could be the path to powering the future

Lose weight of fusion reactor component

Simulation of high-pressure plasma for an economical helical fusion reactor

Mathematical noodling leads to new insights into an old fusion problem

ROBO SPACE
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.