Robot Technology News  
ROBO SPACE
A personalized exosuit for real-world walking
by Staff Writers
Boston MA (SPX) Nov 12, 2021

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new approach in which robotic exosuit assistance can be calibrated to an individual and adapt to a variety of real-world walking tasks.

People rarely walk at a constant speed and a single incline. We change speed when rushing to the next appointment, catching a crosswalk signal, or going for a casual stroll in the park. Slopes change all the time too, whether we're going for a hike or up a ramp into a building. In addition to environmental variably, how we walk is influenced by sex, height, age, and muscle strength, and sometimes by neural or muscular disorders such as stroke or Parkinson's Disease.

This human and task variability is a major challenge in designing wearable robotics to assist or augment walking in real-world conditions. To date, customizing wearable robotic assistance to an individual's walking requires hours of manual or automatic tuning - a tedious task for healthy individuals and often impossible for older adults or clinical patients.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new approach in which robotic exosuit assistance can be calibrated to an individual and adapt to a variety of real-world walking tasks in a matter of seconds. The bioinspired system uses ultrasound measurements of muscle dynamics to develop a personalized and activity-specific assistance profile for users of the exosuit.

"Our muscle-based approach enables relatively rapid generation of individualized assistance profiles that provide real benefit to the person walking," said Robert D. Howe, the Abbott and James Lawrence Professor of Engineering, and co-author of the paper.

The research is published in Science Robotics.

Previous bioinspired attempts at developing individualized assistance profiles for robotic exosuits focused on the dynamic movements of the limbs of the wearer. The SEAS researchers took a different approach. The research was a collaboration between Howe's Harvard Biorobotics Laboratory, which has extensive experience in ultrasound imaging and real-time image processing, and the Harvard Biodesign Lab, run by Conor J. Walsh, the Paul A. Maeder Professor of Engineering and Applied Sciences at SEAS, which develops soft wearable robots for augmenting and restoring human performance.

"We used ultrasound to look under the skin and directly measured what the user's muscles were doing during several walking tasks," said Richard Nuckols, a Postdoctoral Research Associate at SEAS and co-first author of the paper. "Our muscles and tendons have compliance which means there is not necessarily a direct mapping between the movement of the limbs and that of the underlying muscles driving their motion."

The research team strapped a portable ultrasound system to the calves of participants and imaged their muscles as they performed a series of walking tasks. "From these pre-recorded images, we estimated the assistive force to be applied in parallel with the calf muscles to offset the additional work they need to perform during the push off phase of the walking cycle," said Krithika Swaminathan, a graduate student at SEAS and the Graduate School of Arts and Sciences (GSAS) and co-first author of the study.

The new system only needs a few seconds of walking, even one stride may be sufficient, to capture the muscle's profile.

For each of the ultrasound-generated profiles, the researchers then measured how much metabolic energy the person used during walking with and without the exosuit. The researchers found that the muscle-based assistance provided by the exosuit significantly reduced the metabolic energy of walking across a range of walking speeds and inclines.

The exosuit also applied lower assistance force to achieve the same or improved metabolic energy benefit than previous published studies.

"By measuring the muscle directly, we can work more intuitively with the person using the exosuit," said Sangjun Lee, a graduate student at SEAS and GSAS and co-first author of the study. "With this approach, the exosuit isn't overpowering the wearer, it's working cooperatively with them."

When tested in real-world situations, the exosuit was able to quickly adapt to changes in walking speed and incline.

Next, the research team aims to test the system making constant, real-time adjustments.

"This approach may help support the adoption of wearable robotics in real-world, dynamic situations by enabling comfortable, tailored, and adaptive assistance," said Walsh, the senior author of the paper.

Research paper


Related Links
Harvard School of Engineering and Applied Sciences
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Giving robots social skills
Boston MA (SPX) Nov 08, 2021
Robots can deliver food on a college campus and hit a hole in one on the golf course, but even the most sophisticated robot can't perform basic social interactions that are critical to everyday human life. MIT researchers have now incorporated certain social interactions into a framework for robotics, enabling machines to understand what it means to help or hinder one another, and to learn to perform these social behaviors on their own. In a simulated environment, a robot watches its companion, gu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Gremlins Program Demonstrates Airborne Recovery

Putin calls for boost to drone arsenal with AI

Turkey says cannot be blamed for Ukraine's drone use

US targets Iran's drone program with sanctions

ROBO SPACE
Facebook whistleblower 'extremely concerned' by metaverse as deals worth billions emerge

China's Tencent buys Japanese game designer: report

Extracting high-quality magnesium sulphate from seawater desalination brine

Nuclear radiation used to transmit digital data wirelessly

ROBO SPACE
New algorithms advance the computing power of early-stage quantum computers

Why the world needs a better LED light bulb

Adding sound to quantum simulations

Chip maker TSMC, Sony partner on new $7 bn plant in Japan

ROBO SPACE
Options for the Diablo Canyon nuclear plant

Rolls-Royce launches nuclear reactor business

Greenland passes law banning uranium mining

Macron says France to build more nuclear reactors

ROBO SPACE
Belgium searches military barracks in far-right probe

Jury members urged clemency for tortured Guantanamo detainee

German IS bride sentenced to 10 years over Yazidi girl murder

Court jails Serb former policeman for Kosovo killings

ROBO SPACE
World needs trillions to face climate threat: draft UN report

COP26 draft urges boost to emissions cutting goals by 2022

Countries far apart as climate talks enter final week

Chasm opens between COP26 words and climate action

ROBO SPACE
Radio-frequency wave scattering improves fusion simulations

New scalable method resolves materials joining in solid-state batteries

Large-scale synthesis methods for single-atom catalysts for alkaline fuel cells

Surrey researchers reveal the hidden behaviour of supercapacitor materials

ROBO SPACE
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.