Robot Technology News
ROBO SPACE
ARMADAS showcases autonomous space construction robots for NASA
Research engineer Christine Gregg inspects a Mobile Metamaterial Internal Co-Integrator (MMIC-I) builder robot. These simple robots are part of a hardware and software system NASA researchers are developing to autonomously build and maintain high-performance large space structures comprised of building blocks. MMIC-I works by climbing though the interior space of building blocks and bolting them to the rest of the structure during a build or unbolting during disassembly. NASA/Dominic Hart
ARMADAS showcases autonomous space construction robots for NASA
by Clarence Oxford
Los Angeles CA (SPX) Jan 18, 2024

NASA's innovative approach to building large-scale infrastructure in space has reached a new milestone with the Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS). This cutting-edge project, developed by a dedicated team at NASA's Ames Research Center, is geared towards meeting the critical needs of future long-duration and deep-space missions.

Christine Gregg, the ARMADAS chief engineer at NASA Ames, emphasized the importance of this development: "The ground assembly experiment demonstrated crucial parts of the system: the scalability and reliability of the robots, and the performance of structures they build. This type of test is key for maturing the technology for space applications."

At its core, ARMADAS utilizes a trio of inchworm-like robots to autonomously assemble, repair, and reconfigure structures from structural building blocks, tailored for a range of space hardware systems. This ability is pivotal for missions targeting the Moon, Mars, and beyond, where long-term presence is the goal. Notably, these robots can operate in orbit, on lunar surfaces, or other planets even before human arrival, underscoring their significance for deep-space exploration.

The recent laboratory demonstration of ARMADAS technology at NASA Ames saw these robots autonomously construct a meter-scale shelter structure, similar in size to a small shed, using hundreds of building blocks. The structure's high strength, stiffness, and low mass are comparable to today's leading structures like long bridges, aircraft wings, and even the International Space Station's trusses, marking a significant advancement in the field of robotically reconfigurable structures.

Kenny Cheung, the principal investigator of ARMADAS at NASA Ames, elaborated on the project's innovative aspects: "'Mission adaptive' capabilities allow a system to be reused for multiple purposes... 'Digital assembly systems' refers to the use of discrete building blocks, as a physical analog to the digital systems that we use today."

These building blocks, or voxels, are made from strong and lightweight composite materials, fashioned into a cuboctahedron shape. They not only offer surprising strength and stiffness but also ensure material efficiency and cost-effectiveness. The scalability of the ARMADAS system allows for the construction of structures of various sizes, limited only by the number of building blocks supplied.

The ARMADAS project also emphasizes the reliability and simplicity of the robots. Gregg pointed out the unique approach: "We turn that problem on its head by making very simple and reliable robots that operate in an extremely structured lattice environment."

During the demonstration, the robots showcased remarkable coordination. Two robots moved in an inchworm style along the structure's exterior, handling one voxel at a time. One fetched voxels from a supply station, while the other placed each voxel in its intended location. A third robot followed, securing each new voxel to the structure. This process highlights the system's autonomy and the ability to self-correct without external measurement tools.

Looking ahead, the ARMADAS team plans to expand the variety of voxel types to include solar panels, electrical connections, shielding, and more. This expansion is set to dramatically increase the system's applications, allowing the robots to tailor structures to specific needs and locations.

The ARMADAS project not only enhances the capabilities of equipment sent for deep space exploration missions but also extends their operational lifespan. By enabling the disassembly and repurposing of space structures, ARMADAS embodies a sustainable approach to space exploration, aligning with NASA's vision for a long-term presence in space.

Related Links
Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS)
All about the robots on Earth and beyond!

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ROBO SPACE
Microsoft CEO defends OpenAI partnership after EU, UK probes
Davos, Switzerland (AFP) Jan 16, 2024
Microsoft CEO Satya Nadella on Tuesday defended his company's multi-billion-dollar investment in ChatGPT developer OpenAI after the EU and Britain launched probes into whether it resembles a merger. Nadella was speaking on the sidelines during an event organised by Bloomberg at the World Economic Forum in the Swiss Alpine resort of Davos. "If we want competition in AI against some of the players who are completely already integrated, I think partnerships is one avenue of, in fact, having competi ... read more

ROBO SPACE
Aerovel Joins Airbus, Bolstering Tactical Unmanned Aerial Capabilities

Drone attack on anti-IS coalition in Iraq thwarted

Mitsubishi Electric unveils AnyMile for enhanced drone logistics and fleet management

US, British forces shoot down 21 drones and missiles fired from Yemen

ROBO SPACE
Epic says Apple court fight is 'lost'

US, UK strikes targeted Huthi radar, missile capabilities: defense chief

D-Orbit Secures Record euro 100m in Series C Funding, Advancing Space Logistics and In-Orbit Services

NASA's Cryo Efforts Beyond the Atmosphere

ROBO SPACE
TSMC to launch chipmaking plant in Japan, but US plant to face delays

Taiwan's TSMC to launch Japan chipmaking plant in February

Solid-state qubits: Forget about being clean, embrace mess

Breakthrough in controlling magnetization for spintronics

ROBO SPACE
Innovative use of antineutrinos in monitoring nuclear reactors for non-proliferation

Uranium Energy Corp to Resume Uranium Production in Wyoming's Powder River Basin

UK unveils plans for 'biggest nuclear power expansion in 70 years'

Jeumont Electric joins forces with Framatome and Naval Group

ROBO SPACE
El Salvador court orders ex-president's arrest over 1981 massacre

On anniversary of Lockerbie bombing, Joe Biden says 'pursuit of justice' continues

U.S. announces charges against alleged Hezbollah member in 1994 bombing

Anti-IS coalition forces targeted in Iraq and Syria: US official

ROBO SPACE
Trade barriers can slow energy transition: IEA chief

EU debates 2040 milestone towards carbon-neutral future

US reduces emissions in 2023 - but not fast enough: report

Private sector funding key to climate transition, World Bank chief says

ROBO SPACE
Self-powered sensor automatically harvests magnetic energy

Cobalt-free batteries could power cars of the future

Study reveals a reaction at the heart of many renewable energy technologies

Using idle trucks to power the grid with clean energy

ROBO SPACE
Tianzhou 7 mission set to enhance operations at China's Tiangong Space Station

Tianzhou 6 cargo spacecraft to return to Earth

Tianxing 1B satellite launched by Kuaizhou 1A to conduct space environment survey

China begins 2024 with key Kuaizhou 1A satellite launch

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.