Robot Technology News  
ROBO SPACE
Will androids dream of quantum sheep?
by Staff Writers
Singapore (SPX) Feb 14, 2017


Quantum replicants of responsive systems can be more efficient than classical models, researchers at the Centre for Quantum Technologies in Singapore have found, because classical models have to store more past information than is necessary to simulate the future. This conceptual artist's illustration suggests the difference in resources required between a classical (green) and quantum (blue) simulation. Image courtesy Mile Gu and Jayne Thompson / Centre for Quantum Technologies, Singapore.

The word 'replicant' evokes thoughts of a sci-fi world where society has replaced common creatures with artificial machines that replicate their behaviour. Now researchers from Singapore have shown that if such machines are ever created, they'll run more efficiently if they harness quantum theory to respond to the environment.

This follows the findings of a team from the Centre for Quantum Technologies (CQT), published 10 February in npj Quantum Information. The team investigated 'input-output processes', assessing the mathematical framework used to describe arbitrary devices that make future decisions based on stimuli received from the environment. In almost all cases, they found, a quantum device is more efficient because classical devices have to store more past information than is necessary to simulate the future.

"The reason turns out to be quantum theory's lack of a definitive reality," says co-author Mile Gu, an Assistant Professor at the Nanyang Technological University, Singapore, who is affiliated with CQT.

"Quantum mechanics has this famous feature where some properties of quantum particles are not just unknown before they are measured, but fundamentally do not exist in a definitive state prior to the act of measurement," he says. The physics only specifies the probabilities the system collapses to each possible value once the measurement is performed. That lets the quantum system, in a sense, do more with less.

Co-author Jayne Thompson, a Research Fellow at CQT, explains further: "Classical systems always have a definitive reality. They need to retain enough information to respond correctly to each possible future stimulus. By engineering a quantum device so that different inputs are like different quantum measurements, we can replicate the same behaviour without retaining a complete description of how to respond to each individual question." Andrew Garner, another Research Fellow at CQT, and Vlatko Vedral, a Principal Investigator at CQT and Professor at the University of Oxford, also contributed to the paper.

The findings advance earlier work. In 2012, Vedral, Gu and others proved a similar result for another class of problems known as stochastic processes. These are systems that have dynamics independent of external stimuli.

That result was just put to experimental test by collaborators from Griffith University in Australia. They constructed a real life quantum simulator of a stochastic process [Science Advances 3, e1601302 (2017)].

This proof-of-principle experiment used just two particles of light. The first simulations of input-output processes will probably be small-scale too, but Gu hopes to ultimately see quantum technologies simulating how complex systems will react and evolve in real life situations.

"Input-output processes are ubiquitous in nature," says Vedral. "Every entity is essentially an input-output process, from neural networks that process past inputs to make future decisions, to seeds that determine when to germinate based on external stimuli," he says.

"Humans have long been fascinated with the idea of replicating nature through machines, from Leonardo da Vinci's famous mechanical knight to speculative fiction of future androids like Philip K. Dick's 'Do Androids Dream of Electric Sheep' that inspired the Blade Runner film," Gu says. "Perhaps androids in the future, engineered by an advanced civilization obsessed with efficiency, will instead dream of quantum sheep."

J. Thompson et al, "Using quantum theory to simplify input-output processes" npj Quantum Information doi:10.1038/s41534-016-0001-3 (2017)


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Centre for Quantum Technologies at the National University of Singapore
All about the robots on Earth and beyond!






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Success by deception
Zurich, Switzerland (SPX) Feb 14, 2017
When computers independently identify bodies of water and their outlines in satellite images, or beat the world's best professional players at the board game Go, then adaptive algorithms are working in the background. Programmers supply these algorithms with known examples in a training phase: images of bodies of water and land, or sequences of Go moves that have led to success or failure in tou ... read more


ROBO SPACE
Born killers: French army grooms eagles to down drones

Leonardo supplying radars for Patroller drones

Ukroboronprom presents modified Phantom unmanned vehicle

Monitoring birds by drone

ROBO SPACE
Scientists predicted new high-energy compounds

ESA's six-legged Suntracker flying on a Dragon

Sky and Space signs agreement with US Department of Defence

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

ROBO SPACE
Chip could make voice control ubiquitous in electronics

Artificial synapse for neural networks

Combining the ultra-fast with the ultra-small

Mail armor inspires physicists

ROBO SPACE
System automatically detects cracks in nuclear power plants

China delays nuclear reactor start again

Slovenian nuclear plant restarts after shutdown

Russia's Rosatom Subsidiaries Produced 7,900 Tonnes of Uranium in 2016

ROBO SPACE
IS won't be defeated unless corruption tackled: report

Bashiqa brings back the booze to clear IS hangover

IS leaders leaving Syria's Raqa, Pentagon says

IS fighter first to be stripped of Australian citizenship

ROBO SPACE
New Zealand lauded for renewables, but challenges remain

EU parliament backs draft carbon trading reforms

Taiwan lantern makers go green for festival of lights

Republican ex-top diplomats propose a carbon tax

ROBO SPACE
Making sodium-ion batteries that last

Stabilizing energy storage

Looking for the next leap in rechargeable batteries

Tiny nanoclusters could solve big problems for lithium-ion batteries

ROBO SPACE
Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.