Robot Technology News  
ROBO SPACE
Using static electricity, RoboBees can land and stick to surfaces
by Staff Writers
Boston MA (SPX) May 20, 2016


The RoboBee can stick to almost any surface, form glass to wood to a leaf. Image courtesy Harvard Microrobotics Lab and Harvard University. Watch a video on the research here.

Call them the RoboBats. In a recent article in Science, Harvard roboticists demonstrate that their flying microrobots, nicknamed the RoboBees, can now perch during flight to save energy - like bats, birds or butterflies.

"Many applications for small drones require them to stay in the air for extended periods," said Moritz Graule, first author of the paper who conducted this research as a student at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Wyss Institute for Biologically Inspired Engineering at Harvard University. "Unfortunately, smaller drones run out of energy quickly. We want to keep them aloft longer without requiring too much additional energy."

The team found inspiration in nature and simple science.

"A lot of different animals use perching to conserve energy," said Kevin Ma, a post-doc at SEAS and the Wyss Institute and coauthor. "But the methods they use to perch, like sticky adhesives or latching with talons, are inappropriate for a paperclip-size microrobot, as they either require intricate systems with moving parts or high forces for detachment."

Instead, the team turned to electrostatic adhesion - the same basic science that causes a static-charged sock to cling to a pants leg or a balloon to stick to a wall.

When you rub a balloon on a wool sweater, the balloon becomes negatively charged. If the charged balloon is brought close to a wall, that negative charge forces some of the wall's electrons away, leaving the surface positively charged. The attraction between opposite charges then causes the balloon to stick to the wall.

"In the case of the balloon, however, the charges dissipate over time, and the balloon will eventually fall down," said Graule. "In our system, a small amount of energy is constantly supplied to maintain the attraction."

The RoboBee, pioneered at the Harvard Microrobotics Lab, uses an electrode patch and a foam mount that absorbs shock. The entire mechanism weighs 13.4 mg, bringing the total weight of the robot to about 100mg - similar to the weight of a real bee. The robot takes off and flies normally. When the electrode patch is supplied with a charge, it can stick to almost any surface, from glass to wood to a leaf. To detach, the power supply is simply switched off.

"One of the biggest advantages of this system is that it doesn't cause destabilizing forces during disengagement, which is crucial for a robot as small and delicate as ours," said Graule.

The patch requires about 1000 times less power to perch than it does to hover, offering to dramatically extend the operational life of the robot. Reducing the robot's power requirements is critical for the researchers, as they work to integrate onboard batteries on untethered RoboBees.

"The use of adhesives that are controllable without complex physical mechanisms, are low power, and can adhere to a large array of surfaces is perfect for robots that are agile yet have limited payload - like the RoboBee," added Robert Wood, Charles River Professor of Engineering and Applied Sciences at SEAS and a core faculty member of the Wyss Institute, and senior author of the study. "When making robots the size of insects, simplicity and low power are always key constraints."

Right now, the RoboBee can only perch under overhangs and on ceilings, as the electrostatic patch is attached to the top of the vehicle. Next, the team hopes to change the mechanical design so that the robot can perch on any surface.

"There are more challenges to making a robust, robotic landing system but this experimental result demonstrates a very versatile solution to the problem of keeping flying microrobots operating longer without quickly draining power," said Ma.

The paper was coauthored by Pakpong Chirarattananon, Sawyer B. Fuller, Noah Jafferis, Matthew Spenko and Roy Kornbluh. The research was funded by the National Science Foundation, the Wyss Institute for Biologically Inspired Engineering, and the Swiss Study Foundation.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard School of Engineering and Applied Sciences
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Animal training techniques teach robots new tricks
Pullman WA (SPX) May 18, 2016
Researchers at Washington State University are using ideas from animal training to help non-expert users teach robots how to do desired tasks. The researchers recently presented their work at the international Autonomous Agents and Multiagent Systems conference, a leading scientific gathering for agents and robotics research. As robots become more pervasive in society, humans will want the ... read more


ROBO SPACE
Australian Navy flight tests its ScanEagles

A year of mystery swirls around latest X-37B mission

New flight test campaign for nEUROn combat drone

Airbus DS offers new SkyGhost ER mini drone

ROBO SPACE
Precise measurements on earth ensure NASA's spacecraft work in space

How the giant magnetoelectric effect occurs in bismuth ferrite

Rice de-icer gains anti-icing properties

Combining nanotextures with Leidenfrost effect for water repellency

ROBO SPACE
Ferrous chemistry in aqueous solution unravelled

Cobham announces new GaN-based solid state technology

Primitive quantum computer finds application

First single-enzyme method to produce quantum dots revealed

ROBO SPACE
Obama says no apology for A-bomb on Hiroshima visit

US eyes European reactors market

Pakistan seeks nuclear group membership to curb proliferation

Rosatom Ready to Start on Iran's New Nuclear Reactors

ROBO SPACE
Gulf countries, Canada to cooperate in anti-IS fight

Key stages in the war against IS

US kills two 'high-value' IS targets, Iraqi troops enter remote city

NATO to give 'niche' support to anti-IS coalition

ROBO SPACE
Changing the world, 1 fridge at a time

Could off-grid electricity systems accelerate energy access

EU court overturns carbon market free quotas

Global leaders agree to set price on carbon pollution

ROBO SPACE
Power up when the temperature is down

Technique improves the efficacy of fuel cells

Enhancing lab-on-a-chip peristalsis with electro-osmosis

Researchers integrate diamond/boron layers for high-power devices

ROBO SPACE
China's new launch center prepares for maiden mission

China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.