Training artificial intelligence with artificial X-rays by Staff Writers Toronto, Canada (SPX) Jul 17, 2018
Artificial intelligence (AI) holds real potential for improving both the speed and accuracy of medical diagnostics. But before clinicians can harness the power of AI to identify conditions in images such as X-rays, they have to 'teach' the algorithms what to look for. Identifying rare pathologies in medical images has presented a persistent challenge for researchers, because of the scarcity of images that can be used to train AI systems in a supervised learning setting. Professor Shahrokh Valaee and his team have designed a new approach: using machine learning to create computer generated X-rays to augment AI training sets. "In a sense, we are using machine learning to do machine learning," says Valaee, a professor in The Edward S. Rogers Sr. Department of Electrical and Computer Engineering (ECE) at the University of Toronto. "We are creating simulated X-rays that reflect certain rare conditions so that we can combine them with real X-rays to have a sufficiently large database to train the neural networks to identify these conditions in other X-rays." Valaee is a member of the Machine Intelligence in Medicine Lab (MIMLab), a group of physicians, scientists and engineering researchers who are combining their expertise in image processing, artificial intelligence and medicine to solve medical challenges. "AI has the potential to help in a myriad of ways in the field of medicine," says Valaee. "But to do this we need a lot of data - the thousands of labelled images we need to make these systems work just don't exist for some rare conditions." To create these artificial X-rays, the team uses an AI technique called a deep convolutional generative adversarial network (DCGAN) to generate and continually improve the simulated images. GANs are a type of algorithm made up of two networks: one that generates the images and the other that tries to discriminate synthetic images from real images. The two networks are trained to the point that the discriminator cannot differentiate real images from synthesized ones. Once a sufficient number of artificial X-rays are created, they are combined with real X-rays to train a deep convolutional neural network, which then classifies the images as either normal or identifies a number of conditions. "We've been able to show that artificial data generated by a deep convolutional GANs can be used to augment real datasets," says Valaee. "This provides a greater quantity of data for training and improves the performance of these systems in identifying rare conditions." The MIMLab compared the accuracy of their augmented dataset to the original dataset when fed through their AI system and found that classification accuracy improved by 20 per cent for common conditions. For some rare conditions, accuracy improved up to about 40 per cent - and because the synthesized X-rays are not from real individuals the dataset can be readily available to researchers outside the hospital premises without violating privacy concerns. "It's exciting because we've been able to overcome a hurdle in applying artificial intelligence to medicine by showing that these augmented datasets help to improve classification accuracy," says Valaee. "Deep learning only works if the volume of training data is large enough and this is one way to ensure we have neural networks that can classify images with high precision."
Reducing the Data Demands of Smart Machines Washington DC (SPX) Jul 13, 2018 Machine learning (ML) systems today learn by example, ingesting tons of data that has been individually labeled by human analysts to generate a desired output. As these systems have progressed, deep neural networks (DNN) have emerged as the state of the art in ML models. DNN are capable of powering tasks like machine translation and speech or object recognition with a much higher degree of accuracy. However, training DNN requires massive amounts of labeled data-typically 109 or 1010 training examples. T ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |