Teaching robots good manners by Staff Writers Washington DC (SPX) Jun 01, 2017
Advances in artificial intelligence (AI) are making virtual and robotic assistants increasingly capable in performing complex tasks. For these "smart" machines to be considered safe and trustworthy collaborators with human partners, however, robots must be able to quickly assess a given situation and apply human social norms. Such norms are intuitively obvious to most people-for example, the result of growing up in a society where subtle or not-so-subtle cues are provided from childhood about how to appropriately behave in a group setting or respond to interpersonal situations. But teaching those rules to robots is a novel challenge. To address that challenge, DARPA-funded researchers recently completed a project that aimed to provide a theoretical and formal framework for what norms and normative networks are; study experimentally how norms are represented and activated in the human mind; and examine how norms can be learned and might emerge from novel interactive algorithms. The team was able to create a cognitive-computational model of human norms in a representation that can be coded into machines, and developed a machine-learning algorithm that allows machines to learn norms in unfamiliar situations drawing on human data. The work represents important progress towards the development of AI systems that can "intuit" how to behave in certain situations in much the way people do. "The goal of this research effort was to understand and formalize human normative systems and how they guide human behavior, so that we can set guidelines for how to design next-generation AI machines that are able to help and interact effectively with humans," said Reza Ghanadan, DARPA program manager. As an example in which humans intuitively apply social norms of behavior, consider a situation in which a cell phone rings in a quiet library. A person receiving that call would quickly try to silence the distracting phone, and whisper into the phone before going outside to continue the call in a normal voice. Today, an AI phone-answering system would not automatically respond with that kind of social sensitivity. "We do not currently know how to incorporate meaningful norm processing into effective computational architectures," Ghanadan said, adding that social and ethical norms have a number of properties that make them uniquely challenging. "There seems to be an enormous number of these norms, yet they are highly context-specific and only a relevant subset of them get activated, depending on the situation. Moreover, they seem to exist in an organizational hierarchy but can also be activated in horizontal bundles-networks of norms tied together by the contexts in which they apply and triggered by certain context-specific features of the world. They can be in conflict with one another but they are also continuously being updated." Further complicating matters, norms are activated extremely quickly. "That's something we are all familiar with," Ghanadan said, "since 'normal' people detect norm violations very quickly!" And in people, new norms or their preconditions for activation are learned into the already complex norm network through not just one but rather a variety of modalities, such as observation, inference, and instruction. "The uncertainty inherent in these kinds of human data inputs make machine learning of human norms extremely difficult," Ghanadan said. Ultimately, for a robot to become social or perhaps even ethical, it will need to have a capacity to learn, represent, activate, and apply a large number of norms that people in a given society expect one another to obey, Ghanadan said. That task will prove far more complicated than teaching AI systems rules for simpler tasks such as tagging pictures, detecting spam, or guiding people through their tax returns. But by providing a framework for developing and testing such complex algorithms, the new research could accelerate the day when machines emulate the best of human behavior. "If we're going to get along as closely with future robots, driverless cars, and virtual digital assistants in our phones and homes as we envision doing so today, then those assistants are going to have to obey the same norms we do," Ghanadan said. At some point, it may even be a robot behind that desk at the library, raising its finger and saying, "Shhhh!" The work was conducted by researchers at Brown University and Tufts University, led by Bertram Malle at Brown.
San Diego CA (SPX) May 31, 2017 Engineers at UC San Diego are using soft robotics technology to make light, flexible gloves that allow users to feel tactile feedback when they interact with virtual reality environments. The researchers used the gloves to realistically simulate the tactile feeling of playing a virtual piano keyboard. Engineers recently presented their research, which is still at the prototype stage, at th ... read more Related Links Defense Advanced Research Projects Agency All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |