Synthetic two-sided gecko's foot could enable underwater robotics by Staff Writers Washington DC (SPX) Apr 27, 2017
Geckos are well known for effortlessly scrambling up walls and upside down across ceilings. Even in slippery rain forests, the lizards maintain their grip. Now scientists have created a double-sided adhesive that copies this reversible ability to stick and unstick to surfaces even in wet conditions. They say their development, reported in ACS' Journal of Physical Chemistry C, could be useful in underwater robotics, sensors and other bionic devices. Inspired by geckos' natural ability to attach and release their feet from surfaces as slick as glass, scientists have made a number of adhesives that can similarly stick and unstick with changes in temperature, light or magnetic field, but mostly in dry conditions. One promising approach to expanding this to underwater scenarios involves hydrogels that can swell and shrink in response to different acidity levels and other conditions. These volume differences change the gels' friction and stickiness levels. Feng Zhou, Daniele Dini and colleagues recently developed a method to integrate nanostructured hydrogel fibers on an inorganic membrane. The material's friction and stickiness levels changed with pH even when wet. The researchers wanted to further expand on this strategy to make the adhesive work on two sides. The researchers first made the inorganic membrane double-faced and then added the hydrogel nanofibers on both sides. Testing showed that the material exhibited ultra-high friction and adhesion in an acidic liquid (pH of 2), and would rapidly switch to a state of ultra-low friction and stickiness when a basic solution (pH of 12) was added. Additionally, the two sides of the material can stick and slide independently of each other.
Princeton NJ (SPX) Apr 19, 2017 In debates over the future of artificial intelligence, many experts think of the new systems as coldly logical and objectively rational. But in a new study, researchers have demonstrated how machines can be reflections of us, their creators, in potentially problematic ways. Common machine learning programs, when trained with ordinary human language available online, can acquire cultural bi ... read more Related Links American Chemical Society All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |