Robot Technology News  
ROBO SPACE
Sorting molecules with DNA robots
by Staff Writers
Pasadena CA (SPX) Sep 22, 2017


Conceptual illustration of two DNA robots collectively performing a cargo-sorting task on a DNA origami surface, transporting fluorescent molecules with different colors from initially unordered locations to separated destinations. Considerable artistic license has been taken.

Imagine a robot that could help you tidy your home: roving about, sorting stray socks into the laundry and dirty dishes into the dishwasher. While such a practical helper may still be the stuff of science fiction, Caltech scientists have developed an autonomous molecular machine that can perform similar tasks - at the nanoscale. This "robot," made of a single strand of DNA, can autonomously "walk" around a surface, pick up certain molecules and drop them off in designated locations.

The work was done in the laboratory of Lulu Qian, assistant professor of bioengineering. It appears in a paper in the September 15 issue of Science.

"Just like electromechanical robots are sent off to faraway places, like Mars, we would like to send molecular robots to minuscule places where humans can't go, such as the bloodstream," says Qian. "Our goal was to design and build a molecular robot that could perform a sophisticated nanomechanical task: cargo sorting."

How to Build a Molecular Robot
Led by former graduate student Anupama Thubagere (PhD '17), the researchers constructed three basic building blocks that could be used to assemble a DNA robot: a "leg" with two "feet" for walking, an "arm" and "hand" for picking up cargo, and a segment that can recognize a specific drop-off point and signal to the hand to release its cargo. Each of these components is made of just a few nucleotides within a single strand of DNA.

In principle, these modular building blocks could be assembled in many different ways to complete different tasks - a DNA robot with several hands and arms, for example, could be used to carry multiple molecules simultaneously.

In the work described in the Science paper, the Qian group built a robot that could explore a molecular surface, pick up two different molecules - a fluorescent yellow dye and a fluorescent pink dye - and then distribute them to two distinct regions on the surface.

Using fluorescent molecules enabled the researchers to see if the molecules ended up in their intended locations. The robot successfully sorted six scattered molecules, three pink and three yellow, into their correct places in 24 hours. Adding more robots to the surface shortened the time it took to complete the task.

"Though we demonstrated a robot for this specific task, the same system design can be generalized to work with dozens of types of cargos at any arbitrary initial location on the surface," says Thubagere. "One could also have multiple robots performing diverse sorting tasks in parallel."

Design through DNA
The key to designing DNA machines is the fact that DNA has unique chemical and physical properties that are known and programmable. A single strand of DNA is made up of four different molecules called nucleotides - abbreviated A, G, C, and T - and arranged in a string called a sequence. These nucleotides bond in specific pairs: A with T, and G with C. When a single strand encounters a so-called reverse complementary strand - for example, CGATT and AATCG - the two strands zip together in the classic double helix shape.

A single strand containing the right nucleotides can force two partially zipped strands to unzip from each other. How quickly each zipping and unzipping event happens and how much energy it consumes can be estimated for any given DNA sequence, allowing researchers to control how fast the robot moves and how much energy it uses to perform a task. Additionally, the length of a single strand or two zipped strands can be calculated. Thus, the leg and foot of a DNA robot can be designed for a desired step size - in this case, 6 nanometers, which is about a hundred millionth of a human's step size.

Using these chemical and physical principles, researchers can design not only robots but also "playgrounds," such as molecular pegboards, to test them on. In the current work, the DNA robot moves around on a 58-nanometer-by-58-nanometer pegboard on which the pegs are made of single strands of DNA complementary to the robot's leg and foot. The robot binds to a peg with its leg and one of its feet - the other foot floats freely. When random molecular fluctuations cause this free foot to encounter a nearby peg, it pulls the robot to the new peg and its other foot is freed. This process continues with the robot moving in a random direction at each step.

It may take a day for a robot to explore the entire board. Along the way, as the robot encounters cargo molecules tethered to pegs, it grabs them with its "hand" components and carries them around until it detects the signal of the drop-off point. The process is slow, but it allows for a very simple robot design that utilizes very little chemical energy.

Futuristic Applications
"We don't develop DNA robots for any specific applications. Our lab focuses on discovering the engineering principles that enable the development of general-purpose DNA robots," says Qian. "However, it is my hope that other researchers could use these principles for exciting applications, such as using a DNA robot for synthesizing a therapeutic chemical from its constituent parts in an artificial molecular factory, delivering a drug only when a specific signal is given in bloodstreams or cells, or sorting molecular components in trash for recycling."

The paper is titled "A cargo-sorting DNA robot." In addition to Thubagere and Qian, other co-authors are postdoctoral scholar Wei Li, graduate student Robert Johnson (BS '15), former visiting student Zibo Chen, former undergraduates Shayan Doroudi (BS '13), Yae Lim Lee (BS '12), Gregory Izatt (BS '14), and Sarah Wittman (BS '13); former graduate student Niranjan Srinivas (PhD '15), former senior research fellow Damien Woods; and Erik Winfree (PhD '98), professor of computer science, computation and neural systems, and bioengineering. Funding was provided by Caltech Summer Undergraduate Research Fellowships, the National Science Foundation, and the Burroughs Wellcome Fund.

ROBO SPACE
Robot 'conductor' steals the show from Italy's top tenor
Pisa, Italy (AFP) Sept 12, 2017
Italian tenor Andrea Bocelli's voice soars to the rafters of the Tuscan theatre, but all eyes are on the orchestral conductor beside him - a robot with an apparent penchant for Verdi. The concert in the heart of Pisa is a world first, with two mechanical "arms" conducting live music at the grand finale of the first International Festival of Robotics. The Swiss-designed YuMi sweeps its b ... read more

Related Links
California Institute of Technology
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Drones, Fighter jets on table as Mattis visits key ally India

Landmark study suggests risks vary widely in drone-human impacts

Wanted: Novel Approaches for Detecting and Stopping Small Unmanned Air Systems

General Atomics wins $27 million contract for Grey Eagle drone support

ROBO SPACE
Positive, negative or neutral, it all matters: NASA explains space radiation

Space radiation is risky business for the human body

Corrosion in real time

Self-healing gold particles

ROBO SPACE
Laser can control a current in graphene within one femtosecond

Quantum sensors decipher magnetic ordering in semiconducting material

The dark side of quantum computers

Trump blocks Chinese acquisition of US semiconductor firm

ROBO SPACE
Against rising headwinds, UK pushes ahead with nuclear projects

Russia floats out powerful nuclear icebreaker

Russia's use and stockpiles of highly enriched uranium pose significant nuclear risks

Discovery could reduce nuclear waste by chemically reengineering molecules

ROBO SPACE
US strikes IS camp in Libya, killing 17: official

BTO Lays Foundation for a New Generation of Biotech Ventures

US-backed force says in 'final stages' of defeating IS in Raqa

Philippines' Duterte may declare martial law next week: defence chief

ROBO SPACE
SLAC-led project will use AI to prevent or minimize electric grid failures

Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

ROBO SPACE
Corvus Energy wins contract to provide battery systems for hybrid fishing vessels

Graphene-wrapped nanocrystals make inroads towards next-gen fuel cells

UW shatters long-range communication barrier for near-zero-power devices

Researchers challenge status quo of battery commercialization

ROBO SPACE
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.