Scientists simplify model for human behavior in automation by Staff Writers Washington DC (SPX) Oct 25, 2016
Human unpredictability is a problem in the increasingly automated systems people use every day. Scientists from Nanjing Institute of Technology's School of Automation in China and the University of California, Merced's School of Engineering partnered to find a programming solution for erratic human behavior. "In a human-machine control system, the human operator participates in the control process," said Jiacai Huang, a professor at the Nanjing Institute of Technology's School of Automation and the study's lead author. Human operator behavior includes not only skilled control tasks, but also instinctive and emotional reactions. "[An] accurate mathematical model of human operator behavior provides criteria to the controller design and systems analysis." The scientists published the theory and experimental evidence for a new human behavior prediction method in the IEEE/CAA Journal of Automatica Sinica. Control systems, such as a car's cruise control feature, are based on specific parameters with limited variables. On a hill, the cruise control will automatically accelerate to maintain speed against gravity. For most other variables, such as another car slowing unexpectedly, the system depends on the driver to apply the brakes. The system doesn't make decisions; it simply reacts to the input. Yet, the inability to perfectly predict human operator behavior hinders advanced system design. Researchers have analyzed how to best describe human behavior in machine systems since the mid-1940s. Currently, scientists use several equations to account for potential every outcome. The researchers' proposed model is based on fractional order calculus, where multiple outcomes can be considered within the same equation. "[Our] model for human operator behavior has many advantages, such as simple structure with few parameters, [all] with clear physical meaning," said Huang. "More important, the proposed new model gives a unified, formalized description for the human operator behavior." The human operator is modeled as a part of the system rather than an addition to the system, as traditional modeling does. To experimentally test this idea, the scientists created a closed-loop system in which a person followed a target on the screen with a steering wheel. Compared to traditional mathematical models, the proposed method was a better fit for how the human operator actually behaved. "The human operator is a complex system, and many aspects of the human brain and behavior have the characteristics of a fractional order system," Huang said. The researchers plan to study how their human operator model could improve advanced systems, such as autopilot in planes or for robotic use in surgeries. Fulltext of the paper is available here
Related Links Chinese Association of Automation All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |