Robot Technology News  
ROBO SPACE
Robots track moving objects with unprecedented precision
by Staff Writers
Boston MA (SPX) Feb 20, 2019

MIT Media Lab researchers are using RFID tags to help robots home in on moving objects with unprecedented speed and accuracy, potentially enabling greater collaboration in robotic packaging and assembly and among swarms of drones.

A novel system developed at MIT uses RFID tags to help robots home in on moving objects with unprecedented speed and accuracy. The system could enable greater collaboration and precision by robots working on packaging and assembly, and by swarms of drones carrying out search-and-rescue missions.

In a paper being presented next week at the USENIX Symposium on Networked Systems Design and Implementation, the researchers show that robots using the system can locate tagged objects within 7.5 milliseconds, on average, and with an error of less than a centimeter.

In the system, called TurboTrack, an RFID (radio-frequency identification) tag can be applied to any object. A reader sends a wireless signal that reflects off the RFID tag and other nearby objects, and rebounds to the reader. An algorithm sifts through all the reflected signals to find the RFID tag's response. Final computations then leverage the RFID tag's movement - even though this usually decreases precision - to improve its localization accuracy.

The researchers say the system could replace computer vision for some robotic tasks. As with its human counterpart, computer vision is limited by what it can see, and it can fail to notice objects in cluttered environments. Radio frequency signals have no such restrictions: They can identify targets without visualization, within clutter and through walls.

To validate the system, the researchers attached one RFID tag to a cap and another to a bottle. A robotic arm located the cap and placed it onto the bottle, held by another robotic arm. In another demonstration, the researchers tracked RFID-equipped nanodrones during docking, maneuvering, and flying. In both tasks, the system was as accurate and fast as traditional computer-vision systems, while working in scenarios where computer vision fails, the researchers report.

"If you use RF signals for tasks typically done using computer vision, not only do you enable robots to do human things, but you can also enable them to do superhuman things," says Fadel Adib, an assistant professor and principal investigator in the MIT Media Lab, and founding director of the Signal Kinetics Research Group. "And you can do it in a scalable way, because these RFID tags are only 3 cents each."

In manufacturing, the system could enable robot arms to be more precise and versatile in, say, picking up, assembling, and packaging items along an assembly line. Another promising application is using handheld "nanodrones" for search and rescue missions.

Nanodrones currently use computer vision and methods to stitch together captured images for localization purposes. These drones often get confused in chaotic areas, lose each other behind walls, and can't uniquely identify each other.

This all limits their ability to, say, spread out over an area and collaborate to search for a missing person. Using the researchers' system, nanodrones in swarms could better locate each other, for greater control and collaboration.

"You could enable a swarm of nanodrones to form in certain ways, fly into cluttered environments, and even environments hidden from sight, with great precision," says first author Zhihong Luo, a graduate student in the Signal Kinetics Research Group.

The other Media Lab co-authors on the paper are visiting student Qiping Zhang, postdoc Yunfei Ma, and Research Assistant Manish Singh.

Super resolution
Adib's group has been working for years on using radio signals for tracking and identification purposes, such as detecting contamination in bottled foods, communicating with devices inside the body, and managing warehouse inventory.

Similar systems have attempted to use RFID tags for localization tasks. But these come with trade-offs in either accuracy or speed. To be accurate, it may take them several seconds to find a moving object; to increase speed, they lose accuracy.

The challenge was achieving both speed and accuracy simultaneously. To do so, the researchers drew inspiration from an imaging technique called "super-resolution imaging." These systems stitch together images from multiple angles to achieve a finer-resolution image.

"The idea was to apply these super-resolution systems to radio signals," Adib says. "As something moves, you get more perspectives in tracking it, so you can exploit the movement for accuracy."

The system combines a standard RFID reader with a "helper" component that's used to localize radio frequency signals. The helper shoots out a wideband signal comprising multiple frequencies, building on a modulation scheme used in wireless communication, called orthogonal frequency-division multiplexing.

The system captures all the signals rebounding off objects in the environment, including the RFID tag. One of those signals carries a signal that's specific to the specific RFID tag, because RFID signals reflect and absorb an incoming signal in a certain pattern, corresponding to bits of 0s and 1s, that the system can recognize.

Because these signals travel at the speed of light, the system can compute a "time of flight" - measuring distance by calculating the time it takes a signal to travel between a transmitter and receiver - to gauge the location of the tag, as well as the other objects in the environment. But this provides only a ballpark localization figure, not subcentimter precision.

Leveraging movement
To zoom in on the tag's location, the researchers developed what they call a "space-time super-resolution" algorithm.

The algorithm combines the location estimations for all rebounding signals, including the RFID signal, which it determined using time of flight. Using some probability calculations, it narrows down that group to a handful of potential locations for the RFID tag.

As the tag moves, its signal angle slightly alters - a change that also corresponds to a certain location. The algorithm then can use that angle change to track the tag's distance as it moves. By constantly comparing that changing distance measurement to all other distance measurements from other signals, it can find the tag in a three-dimensional space. This all happens in a fraction of a second.

"The high-level idea is that, by combining these measurements over time and over space, you get a better reconstruction of the tag's position," Adib says.

Research Report: 3D Backscatter Localization for Fine-Grained Robotics


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Teaching AI systems to adapt to dynamic environments
Washington DC (SPX) Feb 18, 2019
Current AI systems excel at tasks defined by rigid rules - such as mastering the board games Go and chess with proficiency surpassing world-class human players. However, AI systems aren't very good at adapting to constantly changing conditions commonly faced by troops in the real world - from reacting to an adversary's surprise actions, to fluctuating weather, to operating in unfamiliar terrain. For AI systems to effectively partner with humans across a spectrum of military applications, int ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Illegally drones pose an outsized risk for US aviation and the public

Hughes satellite modems power beyond-line-of-sight comms for UAVs

UK plans drone 'swarm squadrons' after Brexit

German Forces Begin Training Courses on Armed Israeli Surveillance Drones

ROBO SPACE
Malaysia to end bauxite mining ban despite environment fears

New technology captures movement of quantum particles with unprecedented resolution

Solid-state catalysis: Fluctuations clear the way

Ultra-lightweight ceramic material can withstand extreme temps

ROBO SPACE
Spintronics by 'straintronics'

Running an LED in reverse could cool future computers

Penn engineers develop room temperature, two-dimensional platform for quantum technology

Quantum strangeness gives rise to new electronics

ROBO SPACE
Glowing results for nuclear power at France's EDF

Framatome wins major contract to perform maintenance technique at Wolf Creek NPP

Storage of nuclear waste a 'global crisis': report

Strategic French civil nuclear industry contract: Framatome is a committed actor of the sector in France and abroad

ROBO SPACE
Top general won't say 'winning' in anti-IS fight

US struggles to convince anti-IS allies to secure Syria after it leaves

Britain will 'do what it takes' to beat IS: minister

US targets Al-Qaeda in Libya air strike

ROBO SPACE
S.Africa imposes severe power cuts ahead of election

To conserve energy, AI clears up cloudy forecasts

Keeping the lights on during extreme cold snaps takes investments and upgrades

US charges Chinese national for stealing energy company secrets

ROBO SPACE
Lithium-air batteries can store energy for cars, houses and industry

The secret life of batteries

Renewable energy generation with kites and drones

Shell buys German battery maker Sonnen

ROBO SPACE
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.