Robot's in-hand eye maps surroundings, determines hand's location by Staff Writers Pittsburgh PA (SPX) May 19, 2016
Before a robot arm can reach into a tight space or pick up a delicate object, the robot needs to know precisely where its hand is. Researchers at Carnegie Mellon University's Robotics Institute have shown that a camera attached to the robot's hand can rapidly create a 3-D model of its environment and also locate the hand within that 3-D world. Doing so with imprecise cameras and wobbly arms in real-time is tough, but the CMU team found they could improve the accuracy of the map by incorporating the arm itself as a sensor, using the angle of its joints to better determine the pose of the camera. This would be important for a number of applications, including inspection tasks, said Matthew Klingensmith, a Ph.D. student in robotics. The researchers will present their findings on May 17 at the IEEE International Conference on Robotics and Automation in Stockholm, Sweden. Siddhartha Srinivasa, associate professor of robotics, and Michael Kaess, assistant research professor of robotics, joined Klingensmith in the study. Placing a camera or other sensor in the hand of a robot has become feasible as sensors have grown smaller and more power-efficient, Srinivasa said. That's important, he explained, because robots "usually have heads that consist of a stick with a camera on it." They can't bend over like a person could to get a better view of a work space. But an eye in the hand isn't much good if the robot can't see its hand and doesn't know where its hand is relative to objects in its environment. It's a problem shared with mobile robots that must operate in an unknown environment. A popular solution for mobile robots is called simultaneous localization and mapping, or SLAM, in which the robot pieces together input from sensors such as cameras, laser radars and wheel odometry to create a 3-D map of the new environment and to figure out where the robot is within that 3-D world. "There are several algorithms available to build these detailed worlds, but they require accurate sensors and a ridiculous amount of computation," Srinivasa said. Those algorithms often assume that little is known about the pose of the sensors, as might be the case if the camera was handheld, Klingensmith said. But if the camera is mounted on a robot arm, he added, the geometry of the arm will constrain how it can move. "Automatically tracking the joint angles enables the system to produce a high-quality map even if the camera is moving very fast or if some of the sensor data is missing or misleading," Klingensmith said. The researchers demonstrated their Articulated Robot Motion for SLAM (ARM-SLAM) using a small depth camera attached to a lightweight manipulator arm, the Kinova Mico. In using it to build a 3-D model of a bookshelf, they found that it produced reconstructions equivalent or better to other mapping techniques. "We still have much to do to improve this approach, but we believe it has huge potential for robot manipulation," Srinivasa said. Toyota, the U.S. Office of Naval Research and the National Science Foundation supported this research.
Related Links Carnegie Mellon University All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |