Robot Technology News  
ROBO SPACE
Robotic cleaning technique could automate neuroscience research
by Staff Writers
Atlanta GA (SPX) Oct 27, 2016


Georgia Tech associate professor Craig Forest (left) and graduate research assistant Ilya Kolb with the robotic patch-clamping equipment that can automate the process of recording without stopping to replace pipettes. Image courtesy John Toon, Georgia Tech. For a larger version of this image please go here.

For scientists listening in on the faint whispers of brain neurons, a first-ever robotic technique for cleaning the tiny devices that record the signals could facilitate a new level of automation in neuroscience research. That could accelerate the gathering of information used to map the functions of brain cells and ultimately provide a better understanding what's going on between our ears.

The technique would be used in a recording method known as patch-clamping, in which a tiny liquid-filled glass pipette is connected to individual neurons. Since patch-clamping was invented three decades ago, the technique has required changing pipettes between recordings - a manual process that slows research. Now, a robotic cleaning technique developed by researchers at the Georgia Institute of Technology allows the pipettes to be reused for as many as 11 recordings - and potentially more - allowing the recording to be more automated.

"This is a step toward revolutionizing the robotic techniques in neuroscience," said Craig Forest, associate professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering.

"We want to be able to put samples into our machine and walk away while it records 50 or even 100 neurons. This could enable for neuroscience the kind of research automation we've seen in other fields such as molecular biology, dramatically expanding our ability to listen in on brain signals."

Supported by the National Institutes of Health and the Allen Institute for Brain Science, the research was reported October 11 in the journal Scientific Reports. Based on their cleaning technique and earlier innovations that automated the process of connecting the pipettes to cells, the Georgia Tech researchers have demonstrated what's believed to be the first robot to perform sequential patch-clamp recording in cell culture, brain slices, and in the living brain - without a human operator.

To share what it's doing, the patch-clamping robot - known as "patcherBot" - has its own Twitter account to automatically report on every cell it records. "This is the first social neuroscience robot," said Forest.

Patch-clamping is the gold standard for stimulating and recording signals from neurons and other cells. It involves touching a glass pipette with a tip just one micron in diameter to the cell membrane, creating a tight seal that provides a direct electrical connection to the insides of the cell. The work is extremely meticulous and time-consuming, though a recent robotic technology termed the Autopatcher, also out of Forest's lab, has automated parts of the process.

Because cellular debris could prevent the tight connection to cells, researchers have had to replace the pipettes with new ones for each recording. But while conducting patch-clamping, graduate research assistant Ilya Kolb began to question the conventional wisdom that the pipettes could not be used more than once. He knew about detergents used to clean laboratory glassware, and set to work assessing whether or not these agents to be used in a robotic cleaning process.

"If you could clean the pipette automatically after each recording, you could just tell the Autopatcher to go back to cells again and again," Forest explained. "You wouldn't even have to be in the room anymore. You could set this up before you leave the lab for the day, and when you returned the next morning, you'd have recorded 50 or 100 cells."

Kolb tested eight cleaning solutions and found one - Alconox - which successfully removed the debris. He reprogrammed the software operating the Autopatcher to add cleaning and rinsing steps between each recording. The new robot dips the pipette into a detergent solution located in a well next to the sample, creates a flow of fluid into and back out of the pipette, then moves the pipette to a rinse in a separate well. The entire cleaning process takes about a minute, which is as fast or even faster than a trained human operator.

The researchers compared the quality of the recordings made by the cleaned pipettes to those made with new ones.

"When we patch with a fresh pipette and when we patch with a pipette that has been used and cleaned 11 times, the results are basically indistinguishable," said Kolb. "We do see some degradation after 14 or more attempts, but we're hopeful that with improvements in the technique, we could reuse pipettes as many as 50 or 100 times."

Working with researchers at Emory University, the technique was tested to determine whether any remaining detergent residue could affect living cells. Results of the testing, supplemented with mass spectroscopy studies of the pipette fluid, found no adverse implications.

Georgia Tech has filed for patent protection on the new robotic technique, which allows technicians to simply choose the cells to be recorded using a microscope view - then let the machine work. The researchers hope the technique can be commercialized for use not only by the thousands of labs currently using patch-clamping, but also used to expand automated applications more broadly for pharmaceutical testing and other research.

"If we can put this technology into a piece of equipment and have all the smarts provided by software, it could really democratize this area of research," said Forest. "That's where we're headed in building tools that will make new science possible."

Ilya Kolb, W.A. Stoy, E.B. Rousseau, O.A. Moody, A. Jenkins and C.R. Forest, "Cleaning patch-clamp pipettes for immediate reuse," (Scientific Reports 2016).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Germany stalls Chinese takeover of tech firm Aixtron
Frankfurt (AFP) Oct 24, 2016
The German government on Monday said it had withdrawn approval for a Chinese firm to acquire Aixtron, a supplier to the semiconductor industry, amid growing unease over Chinese investment in German companies. Germany's Aixtron said the economy ministry had cancelled the so-called "clearance certificate" it issued last month that paved the way for the 670-million-euro ($730-million) takeover ... read more


ROBO SPACE
New technology may allow drones to recharge midflight

American Aerospace Completes First ever Drone-Based Hurricane Response Exercise

Medical delivery drones take flight over Rwanda

Historic Solar Impulse team planning drone

ROBO SPACE
First complete sabotage attack demonstrated on a 3-D printed drone propeller

Move over, lasers: Scientists can now create holograms from neutrons, too

From ancient fossils to future cars

Creating 3-D hands to keep us safe, increase security

ROBO SPACE
Unusual quantum liquid on crystal surface could inspire future electronics

Quantum computers: 10-fold boost in stability achieved

Sandia, Harvard team create first quantum computer bridge

Infrared brings to light nanoscale molecular arrangement

ROBO SPACE
Germany approves controversial nuclear waste deal

Anti-nuclear politician's win hurts Japan atomic push

Japan nuclear reactor shuttered for safety work

South Africa's nuclear programme kicked into touch, again

ROBO SPACE
Kuwait admits it needs to do more against IS funding

Russia tells US-led coalition not to 'drive terrorists' from Iraq to Syria

For IS jihadists, losing Mosul spells caliphate doom

Best-selling Guantanamo inmate released to Mauritania: Pentagon

ROBO SPACE
Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

ROBO SPACE
Self-healable battery

New 3D design for mobile microbatteries

A window into battery life for next-gen lithium cells

Ames Laboratory scientists gain insight on mechanism of unconventional superconductivity

ROBO SPACE
Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

China closer to establishing permanent space station









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.