On the way to intelligent microrobots by Staff Writers Zurich, Switzerland (SPX) Nov 07, 2019
Researchers at the Paul Scherrer Institute PSI and ETH Zurich have developed a micromachine that can perform different actions. First nanomagnets in the components of the microrobots are magnetically programmed and then the various movements are controlled by magnetic fields. Such machines, which are only a few tens of micrometres across, could be used, for example, in the human body to perform small operations. The researchers have now published their results in the scientific journal Nature. The robot, which measures only a few micrometres across, is reminiscent of a paper bird made with origami - the Japanese art of paper folding. But, unlike a paper structure, the robot moves as if by magic without a visible force. It flaps its wings or bends its neck and retracts its head. These actions are all made possible by magnetism. Researchers at the Paul Scherrer Institute PSI and ETH Zurich have assembled the micromachine from materials that contain small nanomagnets. These nanomagnets can be programmed to assume a particular magnetic orientation. When the programmed nanomagnets are then exposed to a magnetic field, specific forces act on them. If these magnets are located in flexible components, the forces acting on them cause the components to move.
Programming the nanomagnets For the construction of the microrobot, the researchers fabricated arrays of cobalt magnets on thin sheets of silicon nitride. The bird constructed from this material could then perform various movements, such as flapping, hovering, turning or side-slipping. "The movements performed by the microrobot take place within milliseconds", says Laura Heyderman, head of the Laboratory for Multiscale Materials Experiments at PSI and professor for Mesoscopic Systems at the Department of Materials, ETH Zurich. "But programming of the nanomagnets only takes a few nanoseconds. This makes it possible to program the different movements one after the other. This means that the tiny microbird can first flap its wings, then slip to the side and afterwards flap again. "If needed, the bird could also hover in between", says Heyderman.
Intelligent microrobots "It is conceivable that, in the future, an autonomous micromachine will navigate through human blood vessels and perform biomedical tasks such as killing cancer cells", explains Bradley Nelson, head of Department of Mechanical and Process Engineering at ETH Zurich. "Other application areas are also conceivable, for example flexible microelectronics or microlenses that change their optical properties", says Tianyun Huang, a researcher at the Institute of Robotics and Intelligent Systems at ETH Zurich. In addition, applications are possible in which the characteristics of surfaces change. "For example, they could be used to create surfaces that can either be wetted by water or repel water", says Jizhai Cui, an engineer and researcher in the Mesoscopic Systems Lab.
Research Report: Nanomagnetic Encoding of Shape-morphing Micromachines
Robot acquires new, essential spacewalking functions says cosmonaut Moscow (Sputnik) Oct 25, 2019 A Russian-developed anthropomorphic space-faring robot can now perform the important function of deploying fasteners to handrails during spacewalks, cosmonaut Sergei Kud-Sverchkov said Thursday. Speaking at a presentation as part of the annual International Astronautical Congress in Washington, Kud-Sverchkov said that ground experiments and simulations carried out with the robot included "securing and detaching carabiners to handrails." Carabiners are essential for securing a person - or rob ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |