Novel flying robot mimics rapid insect flight by Staff Writers Delft, Netherlands (SPX) Sep 14, 2018
A novel insect-inspired flying robot, developed by TU Delft researchers from the Micro Air Vehicle Laboratory (MAVLab), is presented in Science (14 September 2018). Experiments with this first autonomous, free-flying and agile flapping-wing robot - carried out in collaboration with Wageningen University and Research - improved our understanding of how fruit flies control aggressive escape manoeuvres. Apart from its further potential in insect flight research, the robot's exceptional flight qualities open up new drone applications. Flying animals both power and control flight by flapping their wings. This enables small natural flyers such as insects to hover close to a flower, but also to rapidly escape danger, which everyone has witnessed when trying to swat a fly. Animal flight has always drawn the attention of biologists, who not only study their complex wing motion patterns and aerodynamics, but also their sensory and neuro-motor systems during such agile manoeuvres. Recently, flying animals have also become a source of inspiration for robotics researchers, who try to develop lightweight flying robots that are agile, power-efficient and even scalable to insect sizes.
Novel highly agile flying robot 'The robot has a top speed of 25 km/h and can even perform aggressive manoeuvres, such as 360-degree flips, resembling loops and barrel rolls', says Mat?j Karasek, the first author of the study and main designer of the robot. 'Moreover, the 33 cm wingspan and 29 gram robot has, for its size, excellent power efficiency, allowing 5 minutes of hovering flight or more than a 1 km flight range on a fully charged battery.'
Research on fruit fly escape manoeuvres "I immediately thought we could actually employ it to research insect flight control and dynamics', says Prof. Florian Muijres from the Experimental Zoology group of Wageningen University and Research. Due to Prof. Muijres' previous work on fruit flies, the team decided to program the robot to mimic the hypothesized control actions of these insects during high-agility escape manoeuvres, such as those used when we try to swat them. The manoeuvres performed by the robot closely resembled those observed in fruit flies. The robot was even able to demonstrate how fruit flies control the turn angle to maximize their escape performance. 'In contrast to animal experiments, we were in full control of what was happening in the robot's "brain". This allowed us to identify and describe a new passive aerodynamic mechanism that assists the flies, but possibly also other flying animals, in steering their direction throughout these rapid banked turns', adds Karasek.
Potential for future applications However, until now, these flying robots had not realized this potential since they were either not agile enough - such as our DelFly II - or they required an overly complex manufacturing process.' The robot in this study, named the DelFly Nimble, builds on established manufacturing methods, uses off-the-shelf components, and its flight endurance is long enough to be of interest for real-world applications. The DelFly Nimble will be further developed within the TTW project, 'As nimble as a bee', which is a collaboration between TU Delft and Wageningen University, funded by the Dutch science foundation NWO.
A cyborg cockroach could someday save your life Storrs CT (SPX) Sep 11, 2018 A tiny neuro-controller created by researchers at the University of Connecticut could provide more precise control of futuristic biobots, such as cyborg cockroaches that are already being tested for use in search and rescue missions inside collapsed buildings. Scientists have spent the better part of the past decade exploring ways to tether live insects to miniaturized computer hardware so they can manipulate an insect's movement. Such possibilities are of interest to the U.S. Department of Defens ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |