New AI algorithm taught by humans learns beyond its training by Staff Writers Toronto, Canada (SPX) Nov 18, 2016
"Hey Siri, how's my hair?" Your smartphone may soon be able to give you an honest answer, thanks to a new machine learning algorithm designed by U of T Engineering researchers Parham Aarabi and Wenzhi Guo. The team designed an algorithm that learns directly from human instructions, rather than an existing set of examples, and outperformed conventional methods of training neural networks by 160 per cent. But more surprisingly, their algorithm also outperformed its own training by nine per cent - it learned to recognize hair in pictures with greater reliability than that enabled by the training, marking a significant leap forward for artificial intelligence. Aarabi and Guo trained their algorithm to identify people's hair in photographs - a much more challenging task for computers than it is for humans. "Our algorithm learned to correctly classify difficult, borderline cases - distinguishing the texture of hair versus the texture of the background," says Aarabi. "What we saw was like a teacher instructing a child, and the child learning beyond what the teacher taught her initially." Humans "teach" neural networks - computer networks that learn dynamically - by providing a set of labeled data and asking the neural network to make decisions based on the samples it's seen. For example, you could train a neural network to identify sky in a photograph by showing it hundreds of pictures with the sky labeled. This algorithm is different: it learns directly from human trainers. With this model, called heuristic training, humans provide direct instructions that are used to pre-classify training samples rather than a set of fixed examples. Trainers program the algorithm with guidelines such as "Sky is likely to be varying shades of blue," and "Pixels near the top of the image are more likely to be sky than pixels at the bottom." Their work is published in the journal IEEE Transactions on Neural Networks and Learning Systems. This heuristic training approach holds considerable promise for addressing one of the biggest challenges for neural networks: making correct classifications of previously unknown or unlabeled data. This is crucial for applying machine learning to new situations, such as correctly identifying cancerous tissues for medical diagnostics, or classifying all the objects surrounding and approaching a self-driving car. "Applying heuristic training to hair segmentation is just a start," says Guo. "We're keen to apply our method to other fields and a range of applications, from medicine to transportation."
Related Links University of Toronto Faculty of Applied Science and Engineering All about the robots on Earth and beyond!
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |