Robot Technology News  
ROBO SPACE
Model helps robots navigate more like humans do
by Staff Writers
Boston MA (SPX) Oct 09, 2018

MIT researchers have devised a way to help robots navigate environments more like humans do.

When moving through a crowd to reach some end goal, humans can usually navigate the space safely without thinking too much. They can learn from the behavior of others and note any obstacles to avoid. Robots, on the other hand, struggle with such navigational concepts.

MIT researchers have now devised a way to help robots navigate environments more like humans do. Their novel motion-planning model lets robots determine how to reach a goal by exploring the environment, observing other agents, and exploiting what they've learned before in similar situations. A paper describing the model was presented at this week's IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Popular motion-planning algorithms will create a tree of possible decisions that branches out until it finds good paths for navigation. A robot that needs to navigate a room to reach a door, for instance, will create a step-by-step search tree of possible movements and then execute the best path to the door, considering various constraints. One drawback, however, is these algorithms rarely learn: Robots can't leverage information about how they or other agents acted previously in similar environments.

"Just like when playing chess, these decisions branch out until [the robots] find a good way to navigate. But unlike chess players, [the robots] explore what the future looks like without learning much about their environment and other agents," says co-author Andrei Barbu, a researcher at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Center for Brains, Minds, and Machines (CBMM) within MIT's McGovern Institute.

"The thousandth time they go through the same crowd is as complicated as the first time. They're always exploring, rarely observing, and never using what's happened in the past."

The researchers developed a model that combines a planning algorithm with a neural network that learns to recognize paths that could lead to the best outcome, and uses that knowledge to guide the robot's movement in an environment.

In their paper, "Deep sequential models for sampling-based planning," the researchers demonstrate the advantages of their model in two settings: navigating through challenging rooms with traps and narrow passages, and navigating areas while avoiding collisions with other agents. A promising real-world application is helping autonomous cars navigate intersections, where they have to quickly evaluate what others will do before merging into traffic. The researchers are currently pursuing such applications through the Toyota-CSAIL Joint Research Center.

"When humans interact with the world, we see an object we've interacted with before, or are in some location we've been to before, so we know how we're going to act," says Yen-Ling Kuo, a PhD in CSAIL and first author on the paper. "The idea behind this work is to add to the search space a machine-learning model that knows from past experience how to make planning more efficient."

Boris Katz, a principal research scientist and head of the InfoLab Group at CSAIL, is also a co-author on the paper.

Trading off exploration and exploitation
Traditional motion planners explore an environment by rapidly expanding a tree of decisions that eventually blankets an entire space. The robot then looks at the tree to find a way to reach the goal, such as a door. The researchers' model, however, offers "a tradeoff between exploring the world and exploiting past knowledge," Kuo says.

The learning process starts with a few examples. A robot using the model is trained on a few ways to navigate similar environments. The neural network learns what makes these examples succeed by interpreting the environment around the robot, such as the shape of the walls, the actions of other agents, and features of the goals. In short, the model "learns that when you're stuck in an environment, and you see a doorway, it's probably a good idea to go through the door to get out," Barbu says.

The model combines the exploration behavior from earlier methods with this learned information. The underlying planner, called RRT*, was developed by MIT professors Sertac Karaman and Emilio Frazzoli. (It's a variant of a widely used motion-planning algorithm known as Rapidly-exploring Random Trees, or RRT.)

The planner creates a search tree while the neural network mirrors each step and makes probabilistic predictions about where the robot should go next. When the network makes a prediction with high confidence, based on learned information, it guides the robot on a new path. If the network doesn't have high confidence, it lets the robot explore the environment instead, like a traditional planner.

For example, the researchers demonstrated the model in a simulation known as a "bug trap," where a 2-D robot must escape from an inner chamber through a central narrow channel and reach a location in a surrounding larger room. Blind allies on either side of the channel can get robots stuck.

In this simulation, the robot was trained on a few examples of how to escape different bug traps. When faced with a new trap, it recognizes features of the trap, escapes, and continues to search for its goal in the larger room. The neural network helps the robot find the exit to the trap, identify the dead ends, and gives the robot a sense of its surroundings so it can quickly find the goal.

Results in the paper are based on the chances that a path is found after some time, total length of the path that reached a given goal, and how consistent the paths were. In both simulations, the researchers' model more quickly plotted far shorter and consistent paths than a traditional planner.

Working with multiple agents
In one other experiment, the researchers trained and tested the model in navigating environments with multiple moving agents, which is a useful test for autonomous cars, especially navigating intersections and roundabouts.

In the simulation, several agents are circling an obstacle. A robot agent must successfully navigate around the other agents, avoid collisions, and reach a goal location, such as an exit on a roundabout.

"Situations like roundabouts are hard, because they require reasoning about how others will respond to your actions, how you will then respond to theirs, what they will do next, and so on," Barbu says. "You eventually discover your first action was wrong, because later on it will lead to a likely accident. This problem gets exponentially worse the more cars you have to contend with."

Results indicate that the researchers' model can capture enough information about the future behavior of the other agents (cars) to cut off the process early, while still making good decisions in navigation. This makes planning more efficient.

Moreover, they only needed to train the model on a few examples of roundabouts with only a few cars. "The plans the robots make take into account what the other cars are going to do, as any human would," Barbu says.

Going through intersections or roundabouts is one of the most challenging scenarios facing autonomous cars. This work might one day let cars learn how humans behave and how to adapt to drivers in different environments, according to the researchers. This is the focus of the Toyota-CSAIL Joint Research Center work.

"Not everybody behaves the same way, but people are very stereotypical. There are people who are shy, people who are aggressive. The model recognizes that quickly and that's why it can plan efficiently," Barbu says.

More recently, the researchers have been applying this work to robots with manipulators that face similarly daunting challenges when reaching for objects in ever-changing environments.

Research Report: "Deep sequential models for sampling-based planning"


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Increasingly human-like robots spark fascination and fear
Madrid (AFP) Oct 6, 2018
Sporting a trendy brown bob, a humanoid robot named Erica chats to a man in front of stunned audience members in Madrid. She and others like her are a prime focus of robotic research, as their uncanny human form could be key to integrating such machines into our lives, said researchers gathered this week at the annual International Conference on Intelligent Robots. "You mentioned project management. Can you please tell me more?" Erica, who is playing the role of an employer, asks the man. Sh ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
General Atomics to provide technical services for Gray Eagle drones

Raytheon to deliver small drone decoys to the U.S. Navy

Self-flying glider 'learns' to soar like a bird

General Atomics contracted for Reaper drone ground control work

ROBO SPACE
Researchers discover highly active organic photocatalyst

NTU Singapore scientists develop smart technology for synchronized 3D printing of concrete

Brazil says Norsk Hydro lacked waste license for stalled plant

Reaction of a quantum fluid to photoexcitation of dissolved particles observed for the first time

ROBO SPACE
Defects promise quantum communication through standard optical fiber

A new way to count qubits

Qualcomm alleges Apple gave swiped chip secrets to Intel

Smaller, faster and more efficient modulator sets to revolutionize optoelectronic industry

ROBO SPACE
At Le Creusot, dimensional inspection of test pieces is going digital

New concept to cool boiling surface may help prevent nuclear power plant accidents

TVO joins FROG as EPR reactor operator

First fuel cladding tubes delivered for "Hualong-1" nuclear power plant

ROBO SPACE
US Defense Secretary warns of 'tough fight' to oust IS

Bosnia arrests Syrian, Algerian migrants with weapons

IS leader Baghdadi, world's 'most wanted', sought in Syria offensive

France warns against chemical attacks in last Syria rebel stronghold

ROBO SPACE
How will climate change stress the power grid

Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

ROBO SPACE
Efficient generation of high-density plasma enabled by high magnetic field

Flowing salt water over this super-hydrophobic surface can generate electricity

A new carbon material with Na storage capacity over 400mAh/g

What powers deep space travel

ROBO SPACE
China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.