Mathematics of sea slug movement points to future robots by Staff Writers Washington DC (SPX) Mar 11, 2019
What do pizza slices, sea slugs and one possible design for future soft-bodied robots have in common? They all have frilly surfaces, and new insights about the surprising geometry of frilly surfaces may help a future generation of energy-efficient and extremely flexible soft-body robots move. The complex folds of a frilly surface like coral reefs or kale leaves is a surface mathematicians refer to as an "inflected nonsmooth surface." It changes the direction in which it bends. "People have looked at these hyperbolic surfaces for 200 years, but nobody has thought about the role of smoothness in relation to how these things move, their mechanics," said University of Arizona mathematician Shankar Venkataramani. "Nobody saw a relevance to these things until now." Venkataramani will present his group's research on nonsmooth surfaces, sea slugs and possible robotic applications this week at the 2019 American Physical Society March Meeting in Boston. Until recently, Venkataramani said, physicists generally assumed that natural frills occur when the balanced forces between simultaneous bending and stretching of a sheet cause the surface to crumple. However, Venkataramani, in recent work with doctoral students John Gemmer and Toby Shearman and Hebrew University physicist Eran Sharon, showed that there can be nonsmooth surfaces that are simultaneously unstretched yet frilly. "The idea that these frilly surfaces don't have stretching in them, that was completely counterintuitive," he said. And, he noted, the research showed that changes from one form to another appear to require very little energy. This is key since the ability to change the geometry of surfaces has big implications for their strength and thus ability to act on the surroundings. Pick up a soggy slice of pizza and it creates a mess but "put a little curvature and it becomes stiff and you can eat it," he said. Having developed the mathematics to describe these surfaces, his group modeled nonsmooth thin films with six up-and-down portions and wondered how they would move. "We realized that nature already solved the problem millions of years ago. Some sea slugs and marine worms use this geometry to get around," Venkataramani said. The challenge now, he said, is determining exactly how the distinctive swimming gait of these soft-bodied marine invertebrates, such as the Spanish dancer sea slug, is related to their nonsmooth geometry. The answer may provide "a potential avenue for building soft robots that are energy-efficient and extremely flexible," Venkataramani said.
Ultra-low power chips help make small robots more capable Atlanta GA (SPX) Mar 11, 2019 An ultra-low power hybrid chip inspired by the brain could help give palm-sized robots the ability to collaborate and learn from their experiences. Combined with new generations of low-power motors and sensors, the new application-specific integrated circuit (ASIC) - which operates on milliwatts of power - could help intelligent swarm robots operate for hours instead of minutes. To conserve power, the chips use a hybrid digital-analog time-domain processor in which the pulse-width of signals encod ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |