Engineers build a soft robotics perception system inspired by humans by Staff Writers San Diego CA (SPX) Feb 01, 2019
An international team of researchers has developed a perception system for soft robots inspired by the way humans process information about their own bodies in space and in relation to other objects and people. They describe the system, which includes a motion capture system, soft sensors, a neural network, and a soft robotic finger, in the Jan. 30 issue of Science Robotics. The researchers' ultimate goal is to build a system that can predict a robot's movements and internal state without relying on external sensors, much like humans do every day. In their Science Robotics paper, they show that they have achieved this goal for a soft robotic finger. The work has applications in human-robot interaction and wearable robotics, as well as soft devices to correct disorders affecting muscles and bones. The system is meant to mimic the various components required for humans to navigate their environment: the motion capture system stands in for vision; the neural network stands in for brain functions; the sensors for touch; and the finger for the body interacting with the outside world. The motion capture system is there to train the neural network and can be discarded once training is complete. "The advantages of our approach are the ability to predict complex motions and forces that the soft robot experiences (which is difficult with traditional methods) and the fact that it can be applied to multiple types of actuators and sensors," said Michael Tolley, a professor of mechanical and aerospace engineering at the University of California San Diego and the paper's senior author. "Our method also includes redundant sensors, which improves the overall robustness of our predictions." Researchers embedded soft strain sensors arbitrarily within the soft robotic finger, knowing that they would be responsive to a wide variety of motions, and used machine learning techniques to interpret the sensors' signals. This allowed the team, which includes researchers from the Bioinspired Robotics and Design Lab at UC San Diego, to predict forces applied to, and movements of, the finger. This approach will enable researchers to develop models that can predict forces and deformations experienced by soft robotic systems as they move. This is important because the techniques traditionally used in robotics for processing sensor data can't capture the complex deformations of soft systems. In addition, the information the sensors capture is equally complex. As a result, sensor design, placement and fabrication in soft robots are difficult tasks that could be vastly improved if researchers had access to robust models. This is what the research team is hoping to provide. Next steps include scaling up the number of sensors to better mimic the dense sensing capabilities of biological skin and closing the loop for feedback control of the actuator.
Most people overlook artificial intelligence despite flawless advice Adelphi MD (SPX) Feb 01, 2019 If you were convinced you knew the way home, would you still turn on your GPS? Army scientists recently attempted to answer a similar question due to an ongoing concern that artificial intelligence, which can be opaque and frustrating to many people, may not be helpful in battlefield decision making. "The U.S. Army continues to push the modernization of its forces, with notable efforts including the development of smartphone-based software for real-time information delivery such as the Android Tac ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |