Electronic glove gives robots a sense of touch by Staff Writers Stanford CA (SPX) Nov 23, 2018
Stanford engineers have developed an electronic glove containing sensors that could one day give robotic hands the sort of dexterity that humans take for granted. In a paper published Nov. 21 in Science Robotics, chemical engineer Zhenan Bao and her team demonstrated that the sensors work well enough to allow a robotic hand to touch a delicate berry and handle a pingpong ball without squashing them. "This technology puts us on a path to one day giving robots the sort of sensing capabilities found in human skin," Bao said. Bao said the sensors in the glove's fingertips simultaneously measure the intensity and direction of pressure, two qualities essential to achieving manual dexterity. The researchers must still perfect the technology to automatically control these sensors but when they do, a robot wearing the glove could have the dexterity to hold an egg between thumb and forefinger without smashing it or letting it slip.
Electronics imitating life Our outer layer of skin is imbued with sensors to detect pressure, heat and other stimuli. Our fingers and palms are particularly rich in touch sensors. These sensors work in conjunction with a sublayer of skin called the spinosum, a bumpy microscopic terrain of hills and valleys. That bumpiness is critical. As our finger touches an object, the outer layer of skin moves closer to the spinosum. A light touch is felt mainly by sensors close to the hilltops. More intense pressure forces the outer skin down into the valleys of the spinosum, triggering more intense touch sensations. But measuring the intensity of pressure is only part of what the spinosum enables. This bumpy sublayer also helps reveal the direction of pressure, or shear force. A finger pressing north for instance, creates strong signals on the southern slopes of those microscopic hills. This ability to sense shear force is part of what helps us gently but firmly hold an egg between thumb and forefinger. Postdoctoral scholar Clementine Boutry and master's student Marc Negre led development of the electronic sensors that mimic this human mechanism. Each sensor on the fingertip of the robotic glove is made of three flexible layers that work in concert. The top and bottom layers are electrically active. The researchers laid a grid of electrical lines on each of the two facing surfaces, like rows in a field, and turned these rows perpendicular to each other to create a dense array of small sensing pixels. They also made the bottom layer bumpy like the spinosum. The rubber insulator in the middle simply kept the top and bottom layers of electrodes apart. But that separation was critical, because electrodes that are close without touching can store electrical energy. As the robotic finger pressed down, squeezing the upper electrodes closer to the bottom, the stored energy increased. The hills and valleys of the bottom layer provided a way to map the intensity and direction of pressure to specific points on the perpendicular grids, much like human skin.
Delicate touch In one experiment, they programmed the glove-wearing robotic hand to gently touch a berry without damaging it. They also programmed the gloved hand to lift and move a pingpong ball without crushing it, by using the sensor to detect the appropriate shear force to grasp the ball without dropping it. Bao said that with proper programming a robotic hand wearing the current touch-sensing glove could perform a repetitive task such as lifting eggs off a conveyor belt and placing them into cartons. The technology could also have applications in robot-assisted surgery, where precise touch control is essential. But Bao's ultimate goal is to develop an advanced version of the glove that automatically applies just the right amount of force to handle an object safely without prior programming. "We can program a robotic hand to touch a raspberry without crushing it, but we're a long way from being able to touch and detect that it is raspberry and enable the robot to pick it up," she said.
Nepal's first robot waiter is ready for orders Kathmandu (AFP) Nov 15, 2018 "Please enjoy your meal," says Nepal's first robot waiter, Ginger, as she delivers a plate of steaming dumplings to a table of hungry customers. The poor Himalayan nation is better known for its soaring mountain peaks than technological prowess, but a group of self-taught young innovators are seeking to change that. Local start-up Paaila Technology built Ginger, a 1.5 metre (five-foot) tall robot, from scratch and programmed her to understand both English and Nepali. The bilingual humanoid ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |