Robot Technology News  
ROBO SPACE
Driverless platoons
by Staff Writers
Boston MA (SPX) Dec 29, 2016


MIT engineers have studied a simple vehicle-platooning scenario and determined the best ways to deploy vehicles in order to save fuel and minimize delays.

As driverless cars merge into our transportation system in the coming years, some researchers believe autonomous vehicles may save fuel by trailing each other in large platoons. Like birds and fighter jets flying in formation, or bikers and race car drivers drafting in packs, vehicles experience less aerodynamic drag when they drive close together.

But assembling a vehicle platoon to deliver packages between distribution centers, or to transport passengers between stations, requires time. The first vehicle to arrive at a station must wait for others to show up before they can all leave as a platoon, creating inevitable delays.

Now MIT engineers have studied a simple vehicle-platooning scenario and determined the best ways to deploy vehicles in order to save fuel and minimize delays. Their analysis, presented this week at the International Workshop on the Algorithmic Foundations of Robotics, shows that relatively simple, straightforward schedules may be the optimal approach for saving fuel and minimizing delays for autonomous vehicle fleets. The findings may also apply to conventional long-distance trucking and even ride-sharing services.

"Ride-sharing and truck platooning, and even flocking birds and formation flight, are similar problems from a systems point of view," says Sertac Karaman, the Class of 1948 Career Development Associate Professor of Aeronautics and Astronautics at MIT. "People who study these systems only look at efficiency metrics like delay and throughput. We look at those same metrics, versus sustainability such as cost, energy, and environmental impact. This line of research might really turn transportation on its head."

Karaman is a co-author of the paper, along with Aviv Adler, a graduate student in the Department of Electrical Engineering and Computer Science, and David Miculescu, a graduate student in the Department of Aeronautics and Astronautics.

Pushing through drag

Karaman says that for truck-driving - particularly over long distances - most of a truck's fuel is spent on trying to overcome aerodynamic drag, that is, to push the truck through the surrounding air. Scientists have previously calculated that if several trucks were to drive just a few meters apart, one behind the other, those in the middle should experience less drag, saving fuel by as much as 20 percent, while the last truck should save 15 percent - slightly less, due to air currents that drag behind.

If more vehicles are added to a platoon, more energy can collectively be saved. But there is a cost in terms of the time it takes to assemble a platoon.

Karaman and his colleagues developed a mathematical model to study the effects of different scheduling policies on fuel consumption and delays. They modeled a simple scenario in which multiple trucks travel between two stations, arriving at each station at random times. The model includes two main components: a formula to represent vehicle arrival times, and another to predict the energy consumption of a vehicle platoon.

The group looked at how arrival times and energy consumption changed under two general scheduling policies: a time-table policy, in which vehicles assemble and leave as a platoon at set times; and a feedback policy, in which vehicles assemble and leave as a platoon only when a certain number of vehicles are present - a policy that Karaman first experienced in Turkey.

"I grew up in Turkey, where there are two types of public transportation buses: normal buses that go out at certain time units, and another set where the driver will sit there until the bus is full, and then will go," Karaman says.

When to stay, when to go

In their modeling of vehicle platooning, the researchers analyzed many different scenarios under the two main scheduling policies. For example, to evaluate the effects of time-table scheduling, they modeled scenarios in which platoons were sent out at regular intervals - for instance, every five minutes - versus over more staggered intervals, such as every three and seven minutes. Under the feedback policy, they compared scenarios in which platoons were deployed once a certain number of trucks reached a station, versus sending three trucks out one time, then five trucks out the next time.

Ultimately, the team found the simplest policies incurred the least delays while saving the most fuel. That is, time tables set to deploy platoons at regular intervals were more sustainable and efficient than those that deployed at more staggered times. Similarly, feedback scenarios that waited for the same number of trucks before deploying every time were more optimal than those that varied the number of trucks in a platoon.

Overall, feedback policies were just slightly more sustainable than time-table policies, saving only 5 percent more fuel.

"You'd think a more complicated scheme would save more energy and time," Karaman says. "But we show in a formal proof that in the long run, it's the simpler policies that help you."

Ahead of the game

Karaman is currently working with trucking companies in Brazil that are interested in using the group's model to determine how to deploy truck platoons to save fuel. He hopes to use data from these companies on when trucks enter highways to compute delay and energy tradeoffs with his mathematical model.

Eventually, he says, the model may suggest that trucks follow each other at very close range, within 3 to 4 meters, which is difficult for a driver to maintain. Ultimately, Karaman says, truck platoons may require autonomous driving systems to kick in during long stretches of driving, to keep the platoon close enough together to save the most fuel.

"There are already experimental trials testing autonomous trucks [in Europe]," Karaman says. "I imagine truck platooning is something we might see early in the [autonomous transportation] game."

The researchers are also applying their simulations to autonomous ride-sharing services. Karaman envisions a system of driverless shuttles that transport passengers between stations, at rates and times that depend on the overall system's energy capacity and schedule requirements. The team's simulations could determine, for instance, the optimal number of passengers per shuttle in order to save fuel or prevent gridlock.

"We believe that ultimately this thinking will allow us to build new transportation systems in which the cost of transportation will be reduced substantially," Karaman says.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Marriage and more with robots: science fiction or new reality?
London (AFP) Dec 22, 2016
Sex with robots is "just around the corner", an expert told a global conference in London this week featuring interactive sex toys and discussions on the ethics of relationships with humanoids. "Sexbots" are a staple of science fiction - the idea of robots as sex partners is explored, for instance, in recent films and television series like "Ex-Machina" and "Westworld." But some special ... read more


ROBO SPACE
Tiny spy drones no match for Repellent-1 mobile anti-drone net

General Atomics to perform Reaper, Predator support services

Britain, France continue drone development project

Ford studies using drones to guide self-driving cars

ROBO SPACE
Russian static discharge measure unit to prolong satellite equipment lifespan

'Just the first stage': unique 3D-printed Siberian satellite to orbit Earth

How to 3-D print your own sonic tractor beam

Saab, UAE sign radar support deal

ROBO SPACE
ONR global seeks more powerful electronic devices

Electron-photon small-talk could have big impact on quantum computing

An invisible electrode

World's smallest radio receiver has building blocks the size of 2 atoms

ROBO SPACE
Battling energy crisis, Pakistan turns on fourth nuclear plant

Report finds additional radioactive materials in gas-well drill cuttings

Chemistry research breakthrough that could improve nuclear waste recycling technologies

AREVA NP supplies Safety Instrumentation and Control System for Generation 3 Reactor

ROBO SPACE
In Iraq, Hollande says IS battle prevents attacks at home

10-year-old girl used as human bomb in Nigeria attack

US military formally ends anti-IS operation in Libya's Sirte

2016, the year the IS 'caliphate' buckled

ROBO SPACE
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

ROBO SPACE
World's smallest electrical wire made from world's smallest diamonds

Lifetime of organic light-emitting diodes affected by impurities in vacuum

Bright future for energy devices

Scientists build bacteria-powered battery on single sheet of paper

ROBO SPACE
China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

China sees rapid development of space science and technology

China Space Plan to Develop "Strength and Size"









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.