Robot Technology News  
ROBO SPACE
An army of micro-robots can wipe out dental plaque
by Staff Writers
Philadelphia PA (SPX) Apr 30, 2019

With a precise, controlled movement, microrobots cleared a glass plate of a biofilm, as shown in this time-lapse image.

A visit to the dentist typically involves time-consuming and sometimes unpleasant scraping with mechanical tools to remove plaque from teeth. What if, instead, a dentist could deploy a small army of tiny robots to precisely and non-invasively remove that buildup?

A team of engineers, dentists, and biologists from the University of Pennsylvania developed a microscopic robotic cleaning crew. With two types of robotic systems - one designed to work on surfaces and the other to operate inside confined spaces - the scientists showed that robots with catalytic activity could ably destroy biofilms, sticky amalgamations of bacteria enmeshed in a protective scaffolding. Such robotic biofilm-removal systems could be valuable in a wide range of potential applications, from keeping water pipes and catheters clean to reducing the risk of tooth decay, endodontic infections, and implant contamination.

The work, published in Science Robotics, was led by Hyun (Michel) Koo of the School of Dental Medicine and Edward Steager of the School of Engineering and Applied Science.

"This was a truly synergistic and multidisciplinary interaction," says Koo. "We're leveraging the expertise of microbiologists and clinician-scientists as well as engineers to design the best microbial eradication system possible. This is important to other biomedical fields facing drug-resistant biofilms as we approach a post-antibiotic era."

"Treating biofilms that occur on teeth requires a great deal of manual labor, both on the part of the consumer and the professional," adds Steager. "We hope to improve treatment options as well as reduce the difficulty of care."

Biofilms can arise on biological surfaces, such as on a tooth or in a joint or on objects, like water pipes, implants, or catheters. Wherever biofilms form, they are notoriously difficult to remove, as the sticky matrix that holds the bacteria provides protection from antimicrobial agents.

In previous work, Koo and colleagues have made headway at breaking down the biofilm matrix with a variety of outside-the-box methods. One strategy has been to employ iron-oxide-containing nanoparticles that work catalytically, activating hydrogen peroxide to release free radicals that can kill bacteria and destroy biofilms in a targeted fashion.

Serendipitously, the Penn Dental Medicine team found that groups at Penn Engineering led by Steager, Vijay Kumar, and Kathleen Stebe were working with a robotic platform that used very similar iron-oxide nanoparticles as building blocks for microrobots. The engineers control the movement of these robots using a magnetic field, allowing a tether-free way to steer them.

Together, the cross-school team designed, optimized, and tested two types of robotic systems, which the group calls catalytic antimicrobial robots, or CARs, capable of degrading and removing biofilms. The first involves suspending iron-oxide nanoparticles in a solution, which can then be directed by magnets to remove biofilms on a surface in a plow-like manner. The second platform entails embedding the nanoparticles into gel molds in three-dimensional shapes. These were used to target and destroy biofilms clogging enclosed tubes.

Both types of CARs effectively killed bacteria, broke down the matrix that surrounds them, and removed the debris with high precision. After testing the robots on biofilms growing on either a flat glass surface or enclosed glass tubes, the researchers tried out a more clinically relevant application: Removing biofilm from hard-to-reach parts of a human tooth.

The CARs were able to degrade and remove bacterial biofilms not just from a tooth surface but from one of the most difficult-to-access parts of a tooth, the isthmus, a narrow corridor between root canals where biofilms commonly grow.

"Existing treatments for biofilms are ineffective because they are incapabale of simultaneously degrading the protective matrix, killing the embedded bacteria, and physically removing the biodegraded products," says Koo. "These robots can do all three at once very effectively, leaving no trace of biofilm whatsoever."

By plowing away the degraded remains of the biofilm, Koo says, the chance of it taking hold and re-growing decreases substantially. The researchers envision precisely directing these robots to wherever they need to go to remove biofilms, be it the inside of a cathether or a water line or difficult-to-reach tooth surfaces.

"We think about robots as automated systems that take actions based on actively gathered information," says Steager. In this case, he says, "the motion of the robot can be informed by images of the biofilm gathered from microcameras or other modes of medical imaging."

To move the innovation down the road to clinical application, the researchers are receiving support from the Penn Center for Health, Devices, and Technology, an initiative supported by Penn's Perelman School of Medicine, Penn Engineering, and the Office of the Vice Provost for Research. Penn Health-Tech, as it's known, awards select interdisciplinary groups with support to create new health technologies, and the robotic platforms project was one of those awarded support in 2018.

"The team has a great clinical background on the dental side and a great technical background on the engineering side," says Victoria Berenholz, executive director of Penn Health-Tech. "We're here to round them out on the business side. They have really done a fantastic job on the project."

Research paper


Related Links
University of Pennsylvania
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
FEDOR Space Rescuer: Roscosmos 'Trains' Anthropomorphic Robot for Manned Mission
Moscow (Sputnik) Apr 15, 2019
Russian State Space Corporation Roscosmos and Rocket and Space Corporation Energia have received FEDOR (Final Experimental Demonstration Object Research) anthropomorphic robot for its potential use in manned space missions, Roscosmos Director General Dmitry Rogozin said on Thursday. "FEDOR - anthropomorphic rescue robot developed by the Android Technology R and D Company as well as the Russian Foundation for Advanced Research Projects - has been handed over to Roscosmos and RSC Energia for studyin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
NASC TigerShark-XP UAV Receives FAA Experimental Certification

Cubic to support Boeing's MQ-25 unmanned tanker for the US Navy

Percepto launches its all-in-one aerial solution for autonomous operations

Google-linked firm wins US approval for drone deliveries

ROBO SPACE
Ice-proof coating for big structures relies on a 'beautiful demonstration of mechanics'

Squid skin inspires creation of next-generation space blanket

Coffee machine helped physicists to make ion traps more efficient

New polymer films conduct heat instead of trapping it

ROBO SPACE
HKUST physicist contributes to new record of quantum memory efficiency

Bridge over coupled waters: Scientists 3D-print all-liquid 'lab on a chip'

New robust device may scale up quantum tech, researchers say

Nanocomponent is a quantum leap for Danish physicists

ROBO SPACE
Fuel BU boosts technological innovation with its "Free to Innovate" initiative

Japan to halt nuke plants if anti-terror steps not taken

Japan turns to foreigners to decommission Fukushima plant

Framatome invests 12.6 million euro on its site of Ugine and inaugurates its new VAR furnace

ROBO SPACE
Afraid but unbowed: Sri Lanka Catholics pray for Easter bombing victims

US says new airstrike on IS target in Somalia kills 3

Children born to IS fathers not considered Yazidi: council

Sri Lanka troops join hunt for bomb attack suspects

ROBO SPACE
Siemens inches forward in race to revamp Iraq's grid

US charges Chinese engineer with stealing GE technology

New York mayor targets classic skyscrapers with Green New Deal

Lights out around the globe for Earth Hour environmental campaign

ROBO SPACE
Graphene sponge helps lithium sulphur batteries reach new potential

Transforming waste heat into clean energy

China's quest for clean, limitless energy heats up

Artificial intelligence speeds efforts to develop clean, virtually limitless fusion energy

ROBO SPACE
China to build moon station in 'about 10 years'

China to enhance international space cooperation

China opens Chang'e-6 for international payloads, asteroids next

China's commercial carrier rocket finishes engine test









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.